Binary to Decimal Converter
Converting a Binary Number to Decimal
Binary numbers are the foundation of all modern computing systems. The binary number system, also known as base-2, uses only two digits: 0 and 1. Each digit in a binary number is referred to as a bit, and the position of each bit determines its value in the overall number, similar to the way place value works in the decimal system (base-10).
To convert a binary number to its decimal equivalent, you must understand the positional value of each bit. Starting from the rightmost bit (the least significant bit), each position in a binary number represents a power of 2, beginning with \(2^0\) and increasing as you move to the left. The value of the binary number is the sum of these powers of 2, for each position where there is a 1.
For example, the binary number 1101 can be converted to decimal by calculating:
\(1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0\)
This method is the standard approach to converting binary to decimal.
Examples
Let’s explore some examples to understand how to convert binary numbers to their decimal equivalents.
1. Convert the binary number 1101 to decimal.
Answer
First, we identify the given number:
Given:
Next, we calculate the decimal value by applying the powers of 2 to each bit:
Steps:
- Starting from the rightmost bit, we assign powers of 2: \(2^3\), \(2^2\), \(2^1\), \(2^0\).
- Calculate each term where the binary digit is 1:
- \(1 \times 2^3 = 8\)
- \(1 \times 2^2 = 4\)
- \(0 \times 2^1 = 0\)
- \(1 \times 2^0 = 1\)
- Sum these values to get the decimal equivalent:
The final decimal value is:
Decimal Equivalent:
13
Result:
∴ The decimal equivalent of the binary number 1101 is 13.
2. Convert the binary number 1010 to decimal.
Answer
We start by identifying the number:
Given:
Next, we calculate the decimal value by applying the powers of 2 to each bit:
Steps:
- Assign powers of 2: \(2^3\), \(2^2\), \(2^1\), \(2^0\).
- Calculate each term where the binary digit is 1:
- \(1 \times 2^3 = 8\)
- \(0 \times 2^2 = 0\)
- \(1 \times 2^1 = 2\)
- \(0 \times 2^0 = 0\)
- Sum these values to get the decimal equivalent:
The final decimal value is:
Decimal Equivalent:
10
Result:
∴ The decimal equivalent of the binary number 1010 is 10.
3. Determine the decimal equivalent of the binary number 11111.
Answer
First, we identify the given number:
Given:
Next, we calculate the decimal value by applying the powers of 2 to each bit:
Steps:
- Assign powers of 2: \(2^4\), \(2^3\), \(2^2\), \(2^1\), \(2^0\).
- Calculate each term where the binary digit is 1:
- \(1 \times 2^4 = 16\)
- \(1 \times 2^3 = 8\)
- \(1 \times 2^2 = 4\)
- \(1 \times 2^1 = 2\)
- \(1 \times 2^0 = 1\)
- Sum these values to get the decimal equivalent:
- \(16 + 8 + 4 + 2 + 1 = 31\)
The final decimal value is:
Decimal Equivalent:
31
Result:
∴ The decimal equivalent of the binary number 11111 is 31.
4. Convert the binary number 10001 to decimal.
Answer
We start by identifying the number:
Given:
Next, we calculate the decimal value by applying the powers of 2 to each bit:
Steps:
- Assign powers of 2: \(2^4\), \(2^3\), \(2^2\), \(2^1\), \(2^0\).
- Calculate each term where the binary digit is 1:
- \(1 \times 2^4 = 16\)
- \(0 \times 2^3 = 0\)
- \(0 \times 2^2 = 0\)
- \(0 \times 2^1 = 0\)
- \(1 \times 2^0 = 1\)
- Sum these values to get the decimal equivalent:
- \(16 + 0 + 0 + 0 + 1 = 17\)
The final decimal value is:
Decimal Equivalent:
17
Result:
∴ The decimal equivalent of the binary number 10001 is 17.
{
"topic": "binary-decimal",
"input_types": [
"text"
],
"input_labels": [
"Binary"
],
"input_values": [
1101
],
"type": "Convert",
"title": "Binary to Decimal",
"category": "Numbers",
"function": "function myFunc(arr) {\n let x = arr[0];\n if (/^[01]+$/.test(x)) return parseInt(x, 2);\n else return \"Invalid input.\";\n }",
"op_label": "Decimal",
"explanation": "This converter converts the given binary number to decimal number.",
"content": "<h2>Converting a Binary Number to Decimal</h2>\n<p>Binary numbers are the foundation of all modern computing systems. The binary number system, also known as base-2, uses only two digits: 0 and 1. Each digit in a binary number is referred to as a bit, and the position of each bit determines its value in the overall number, similar to the way place value works in the decimal system (base-10).</p>\n<p>To convert a binary number to its decimal equivalent, you must understand the positional value of each bit. Starting from the rightmost bit (the least significant bit), each position in a binary number represents a power of 2, beginning with \\(2^0\\) and increasing as you move to the left. The value of the binary number is the sum of these powers of 2, for each position where there is a 1.</p>\n<p>For example, the binary number 1101 can be converted to decimal by calculating:</p>\n<p class=\"tabspace\">\\(1 \\times 2^3 + 1 \\times 2^2 + 0 \\times 2^1 + 1 \\times 2^0\\)</p>\n<p>This method is the standard approach to converting binary to decimal.</p>\n\n<h2>Examples</h2>\n<p>Let’s explore some examples to understand how to convert binary numbers to their decimal equivalents.</p>\n\n<div class=\"example\"><h3 class=\"question\"><span class=\"example_n\">1.</span> Convert the binary number 1101 to decimal.</h3><h4 class=\"answer\">Answer</h4>\n<p>First, we identify the given number:</p>\n<p><b>Given:</b></p><ul><li>Binary: 1101</li></ul>\n<p>Next, we calculate the decimal value by applying the powers of 2 to each bit:</p>\n<p><b>Steps:</b></p><ul><li>Starting from the rightmost bit, we assign powers of 2: \\(2^3\\), \\(2^2\\), \\(2^1\\), \\(2^0\\).</li>\n<li>Calculate each term where the binary digit is 1:</li>\n<ul><li>\\(1 \\times 2^3 = 8\\)</li>\n<li>\\(1 \\times 2^2 = 4\\)</li>\n<li>\\(0 \\times 2^1 = 0\\)</li>\n<li>\\(1 \\times 2^0 = 1\\)</li></ul>\n<li>Sum these values to get the decimal equivalent:</li>\n<ul><li>\\(8 + 4 + 0 + 1 = 13\\)</li></ul></ul>\n<p>The final decimal value is:</p>\n<p><b>Decimal Equivalent:</b></p><p class=\"tabspace\">13</p>\n<p><b>Result:</b></p><p class=\"tabspace answer\">∴ The decimal equivalent of the binary number 1101 is 13.</p></div>\n\n<div class=\"example\"><h3 class=\"question\"><span class=\"example_n\">2.</span> Convert the binary number 1010 to decimal.</h3><h4 class=\"answer\">Answer</h4>\n<p>We start by identifying the number:</p>\n<p><b>Given:</b></p><ul><li>Binary: 1010</li></ul>\n<p>Next, we calculate the decimal value by applying the powers of 2 to each bit:</p>\n<p><b>Steps:</b></p><ul><li>Assign powers of 2: \\(2^3\\), \\(2^2\\), \\(2^1\\), \\(2^0\\).</li>\n<li>Calculate each term where the binary digit is 1:</li>\n<ul><li>\\(1 \\times 2^3 = 8\\)</li>\n<li>\\(0 \\times 2^2 = 0\\)</li>\n<li>\\(1 \\times 2^1 = 2\\)</li>\n<li>\\(0 \\times 2^0 = 0\\)</li></ul>\n<li>Sum these values to get the decimal equivalent:</li>\n<ul><li>\\(8 + 0 + 2 + 0 = 10\\)</li></ul></ul>\n<p>The final decimal value is:</p>\n<p><b>Decimal Equivalent:</b></p><p class=\"tabspace\">10</p>\n<p><b>Result:</b></p><p class=\"tabspace answer\">∴ The decimal equivalent of the binary number 1010 is 10.</p></div>\n\n<div class=\"example\"><h3 class=\"question\"><span class=\"example_n\">3.</span> Determine the decimal equivalent of the binary number 11111.</h3><h4 class=\"answer\">Answer</h4>\n<p>First, we identify the given number:</p>\n<p><b>Given:</b></p><ul><li>Binary: 11111</li></ul>\n<p>Next, we calculate the decimal value by applying the powers of 2 to each bit:</p>\n<p><b>Steps:</b></p><ul><li>Assign powers of 2: \\(2^4\\), \\(2^3\\), \\(2^2\\), \\(2^1\\), \\(2^0\\).</li>\n<li>Calculate each term where the binary digit is 1:</li>\n<ul><li>\\(1 \\times 2^4 = 16\\)</li>\n<li>\\(1 \\times 2^3 = 8\\)</li>\n<li>\\(1 \\times 2^2 = 4\\)</li>\n<li>\\(1 \\times 2^1 = 2\\)</li>\n<li>\\(1 \\times 2^0 = 1\\)</li></ul>\n<li>Sum these values to get the decimal equivalent:</li>\n<ul><li>\\(16 + 8 + 4 + 2 + 1 = 31\\)</li></ul></ul>\n<p>The final decimal value is:</p>\n<p><b>Decimal Equivalent:</b></p><p class=\"tabspace\">31</p>\n<p><b>Result:</b></p><p class=\"tabspace answer\">∴ The decimal equivalent of the binary number 11111 is 31.</p></div>\n\n<div class=\"example\"><h3 class=\"question\"><span class=\"example_n\">4.</span> Convert the binary number 10001 to decimal.</h3><h4 class=\"answer\">Answer</h4>\n<p>We start by identifying the number:</p>\n<p><b>Given:</b></p><ul><li>Binary: 10001</li></ul>\n<p>Next, we calculate the decimal value by applying the powers of 2 to each bit:</p>\n<p><b>Steps:</b></p><ul><li>Assign powers of 2: \\(2^4\\), \\(2^3\\), \\(2^2\\), \\(2^1\\), \\(2^0\\).</li>\n<li>Calculate each term where the binary digit is 1:</li>\n<ul><li>\\(1 \\times 2^4 = 16\\)</li>\n<li>\\(0 \\times 2^3 = 0\\)</li>\n<li>\\(0 \\times 2^2 = 0\\)</li>\n<li>\\(0 \\times 2^1 = 0\\)</li>\n<li>\\(1 \\times 2^0 = 1\\)</li></ul>\n<li>Sum these values to get the decimal equivalent:</li>\n<ul><li>\\(16 + 0 + 0 + 0 + 1 = 17\\)</li></ul></ul>\n<p>The final decimal value is:</p>\n<p><b>Decimal Equivalent:</b></p><p class=\"tabspace\">17</p>\n<p><b>Result:</b></p><p class=\"tabspace answer\">∴ The decimal equivalent of the binary number 10001 is 17.</p></div>",
"schema_data": "\n <script type=\"application/ld+json\">\n {\n \"@context\": \"https://schema.org\",\n \"@type\": \"Article\",\n \"author\": {\n \"@type\": \"Person\",\n \"name\": \"Mallikarjuna M\",\n \"honorificSuffix\": \"B.Tech. (Electronics & Communication)\",\n \"url\": \"https://www.linkedin.com/in/mallikarjuna-mallisetty-7330314a/\"\n },\n \n \"dateModified\": \"2024-09-05T00:23:14.014Z\",\n \"datePublished\": \"2024-07-21T07:20:32.526Z\",\n \"description\": \"Convert Binary to Decimal - This converter converts the given binary number to decimal number.\",\n \"headline\": \"Binary to Decimal Convertor\",\n \"mainEntityOfPage\": {\n \"@id\": \"https://convertonline.org\",\n \"@type\": \"WebPage\"\n },\n \"publisher\": {\n \"@type\": \"Organization\",\n \"name\": \"ConvertOnline.org\",\n \"logo\": {\n \"@type\": \"ImageObject\",\n \"url\": \"https://convertonline.org/images/icon.png\",\n \"width\": \"512px\",\n \"height\": \"512px\"\n }\n }\n }\n </script>\n "
}