Use this free online force converter to change kilogram-force into dynes instantly. Type in the kilogram-force value, and the equivalent dynes is calculated for you in real time.
to
Enter your inputs, and the result is calculated in real-time.
Kilogram-Force
Dynes
How to use this Kilogram-Force to Dynes Converter 🤔
Follow these steps to convert given Kilogram-Force value from Kilogram-Force units to Dynes units.
Enter the input Kilogram-Force value in the text field.
The given Kilogram-Force is converted to Dynes in realtime ⌚ using the formula, and displayed under the Dynes label.
You may copy the resulting Dynes value using the Copy button.
Formula
To convert given force from Kilogram-Force to Dynes, use the following formula.
Dynes = Kilogram-Force * 9.806650000000271e+5
Calculation
Calculation will be done after you enter a valid input.
Kilogram-Force
Kilogram-force (kgf) is the force exerted by the weight of one kilogram under standard gravity. It is often used in engineering to describe the force of everyday objects and loads, such as the force exerted by a heavy tool or piece of equipment. It is a non-SI unit but still finds practical use in many fields.
Dynes
A dyne is a unit of force in the centimeter-gram-second (CGS) system, where one dyne equals 10^-5 newtons. It is often used in physics to measure small forces, such as those in fluid dynamics or material science. Although less common today, the dyne is still found in some specialized fields.
{
"conversion": "kilogram-force-dyne",
"x_slug": "kilogram-force",
"y_slug": "dyne",
"x": "kgf",
"y": "dyn",
"x_desc": "Kilogram-Force",
"y_desc": "Dynes",
"category": "Force",
"symbol": "m",
"formula": "x * 9.806650000000271e+5",
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider a person applying 70 kilogram-force to lift a weight in the gym.<br>Convert this force from kilogram-force to Dynes.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The force of lifting the weight in kilogram-force is:</p>\n <p class=\"step\"><span>Force<sub>(Kilogram-Force)</sub></span> = 70</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert force from kilogram-force to dynes is:</p>\n <p class=\"formula step\"><span>Force<sub>(Dynes)</sub></span> = <span>Force<sub>(Kilogram-Force)</sub></span> × 9.806650000000271e+5</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight of lifting the weight, <strong>Force<sub>(Kilogram-Force)</sub> = 70</strong> in the above formula.</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = <span>70</span> × 9.806650000000271e+5</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = 68646550</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>70 kgf</strong> is equal to <strong>68646550 dyn</strong>.</p>\n <p>The force of lifting the weight is <strong>68646550 dyn</strong>, in dynes.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider a shopping bag that exerts 5 kilogram-force.<br>Convert this force from kilogram-force to Dynes.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The force of shopping bag in kilogram-force is:</p>\n <p class=\"step\"><span>Force<sub>(Kilogram-Force)</sub></span> = 5</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert force from kilogram-force to dynes is:</p>\n <p class=\"formula step\"><span>Force<sub>(Dynes)</sub></span> = <span>Force<sub>(Kilogram-Force)</sub></span> × 9.806650000000271e+5</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight of shopping bag, <strong>Force<sub>(Kilogram-Force)</sub> = 5</strong> in the above formula.</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = <span>5</span> × 9.806650000000271e+5</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = 4903325</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>5 kgf</strong> is equal to <strong>4903325 dyn</strong>.</p>\n <p>The force of shopping bag is <strong>4903325 dyn</strong>, in dynes.</p>\n </div>\n ",
"units": [
[
"newton",
"Newtons",
"N"
],
[
"kilonewton",
"Kilonewtons",
"kN"
],
[
"gram-force",
"Gram-Force",
"gf"
],
[
"kilogram-force",
"Kilogram-Force",
"kgf"
],
[
"ton-force",
"Metric Ton-Force",
"tf"
],
[
"exanewton",
"Exanewtons",
"EN"
],
[
"petanewton",
"Petanewtons",
"PT"
],
[
"teranewton",
"Teranewtons",
"TN"
],
[
"giganewton",
"Giganewtons",
"GN"
],
[
"meganewton",
"Meganewtons",
"MN"
],
[
"hectonewton",
"Hectonewtons",
"hN"
],
[
"dekanewton",
"Dekanewtons",
"daN"
],
[
"decinewton",
"Decinewtons",
"dN"
],
[
"centinewton",
"Centinewtons",
"cN"
],
[
"millinewton",
"Millinewtons",
"mN"
],
[
"micronewton",
"Micronewtons",
"µN"
],
[
"nanonewton",
"Nanonewtons",
"nN"
],
[
"piconewton",
"Piconewtons",
"pN"
],
[
"femtonewton",
"Femtonewtons",
"fN"
],
[
"attonewton",
"Attonewtons",
"aN"
],
[
"dyne",
"Dynes",
"dyn"
],
[
"joule-per-meter",
"Joules per Meter",
"J/m"
],
[
"joule-per-centimeter",
"Joules per Centimeter",
"J/cm"
],
[
"ton-force-short",
"Short Ton-Force",
"short tonf"
],
[
"to-force-long",
"Long Ton-Force (UK)",
"tonf (UK)"
],
[
"kip-force",
"Kip-Force",
"kipf"
],
[
"kilopound-force",
"Kilopound-Force",
"kipf"
],
[
"pound-force",
"Pound-Force",
"lbf"
],
[
"ounce-force",
"Ounce-Force",
"ozf"
],
[
"poundal",
"Poundals",
"pdl"
],
[
"pound-foot-per-square-second",
"Pound Foot per Square Second",
"lbf·ft/s²"
],
[
"pond",
"Ponds",
"p"
],
[
"kilopond",
"Kiloponds",
"kp"
]
],
"x_long_desc": "Kilogram-force (kgf) is the force exerted by the weight of one kilogram under standard gravity. It is often used in engineering to describe the force of everyday objects and loads, such as the force exerted by a heavy tool or piece of equipment. It is a non-SI unit but still finds practical use in many fields.",
"y_long_desc": "A dyne is a unit of force in the centimeter-gram-second (CGS) system, where one dyne equals 10^-5 newtons. It is often used in physics to measure small forces, such as those in fluid dynamics or material science. Although less common today, the dyne is still found in some specialized fields."
}