Convert OnlineConvertOnline

Projectile Motion Calculator

Enter the initial velocity, angle of projection, and height.


u : m/s
θ : °
h : m
g : m/s²
R : m
H : m
T : s





How to use this Projectile Motion Calculator 🤔

  1. There are input fields for Initial velocity \((u)\), Angle of lanuch \((θ)\), Initial height \((h)\), Acceleration due to gravity \((g)\), Range \((R)\), Maximum Height \((H)\), and Time of Flight \((T)\). Enter the initial velocity, angle of projection, and height..
  2. The calculator uses the formula, substitues given values, and calcuates the missing value.
  3. The missing value is calcuated and displayed in the input field. Also, the caculation is displayed under the input section.

What is Projectile Motion?

Projectile motion refers to the motion of an object that is launched into the air and moves under the influence of gravity. The object follows a curved path known as a parabola. Key aspects of projectile motion include the horizontal range, maximum height, and total time of flight.

Calculating Parameters of Projectile Motion

Projectile motion involves several key formulas that help determine different aspects of the motion:

In these formulas, the parameters are defined as follows:


Input and Output Combinations of the Projectile Motion Calculator

Here are the input combinations available for the calculator, along with the formulas it uses to calculate the corresponding outputs.

Calculator InputsSet #1
  • u Initial velocity
  • θ Angle of lanuch
  • h Initial height

For these given inputs,

Outputs, Formulas

We calculate the following outputs:

  • Range\(R = \)\( u \cdot \cos( θ ) \cdot \left( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \right) \)
  • Maximum Height\(H = \)\( h + \frac{ u^2 \cdot \sin^2( θ ) }{ 2 \cdot g } \)
  • Time of Flight\(T = \)\( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \)
2 Examples


Examples

1

Consider that an athlete has thrown a Javelin at an angle of 45 ° with an initial velocity of 30 m/s. The javelin is released from hand at a height of 1.2 m from the ground.
Calculate the horizontal distance travelled by the javelin, the maximum height it travelled from the ground, and the time of flight.

Answer

Given:

  • initial velocity of object, u = 30 m/s
  • angle of launch, θ = 45 °
  • initial height from which the object is launched, h = 1.2 m

Calculating range (R)...

\( R = \) \( u \cdot \cos( θ ) \cdot \left( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \right) \)

\( R = \) \(30\times \cos(45°) \times \left( \frac{30\times \sin(45°) + \sqrt{ \left(30\times \sin(45°) \right)^2 + 2 \times9.81\times1.2} }{9.81} \right) \)

\( R = \) 92.9278 m

Calculating maximum height (H)...

\( H = \) \( h + \frac{ u^2 \cdot \sin^2( θ ) }{ 2 \cdot g } \)

\( H = \) \(1.2+ \frac{ u^2 \times \sin^2(45°) }{ 2 \times9.81} \)

\( H = \) 24.1358 m

Calculating time of flight (T)...

\( T = \) \( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \)

\( T = \) \( \frac{30\times \sin(45°) + \sqrt{ \left(30\times \sin(45°) \right)^2 + 2 \times9.81\times1.2} }{9.81} \)

\( T = \) 4.3807 s

2

Consider that an athlete has thrown a Javelin at an angle of 90 ° with an initial velocity of 10 m/s. The javelin is released from hand at a height of 1 m from the ground.
Calculate the horizontal distance travelled by the javelin, the maximum height it travelled from the ground, and the time of flight.

Answer

Given:

  • initial velocity of object, u = 10 m/s
  • angle of launch, θ = 90 °
  • initial height from which the object is launched, h = 1 m

Calculating range (R)...

\( R = \) \( u \cdot \cos( θ ) \cdot \left( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \right) \)

\( R = \) \(10\times \cos(90°) \times \left( \frac{10\times \sin(90°) + \sqrt{ \left(10\times \sin(90°) \right)^2 + 2 \times9.81\times1} }{9.81} \right) \)

\( R = \) 0 m

Calculating maximum height (H)...

\( H = \) \( h + \frac{ u^2 \cdot \sin^2( θ ) }{ 2 \cdot g } \)

\( H = \) \(1+ \frac{ u^2 \times \sin^2(90°) }{ 2 \times9.81} \)

\( H = \) 6.0968 m

Calculating time of flight (T)...

\( T = \) \( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \)

\( T = \) \( \frac{10\times \sin(90°) + \sqrt{ \left(10\times \sin(90°) \right)^2 + 2 \times9.81\times1} }{9.81} \)

\( T = \) 2.1343 s


Input and Output Combinations of the Projectile Motion Calculator

Here are the input combinations available for the calculator, along with the formulas it uses to calculate the corresponding outputs.

Calculator InputsSet #1
  • u Initial velocity
  • θ Angle of lanuch
  • h Initial height

For these given inputs,

Outputs, Formulas

We calculate the following outputs:

  • Range\(R = \)\( u \cdot \cos( θ ) \cdot \left( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \right) \)
  • Maximum Height\(H = \)\( h + \frac{ u^2 \cdot \sin^2( θ ) }{ 2 \cdot g } \)
  • Time of Flight\(T = \)\( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \)
2 Examples


Examples

1

Consider that an athlete has thrown a Javelin at an angle of 45 ° with an initial velocity of 30 m/s. The javelin is released from hand at a height of 1.2 m from the ground.
Calculate the horizontal distance travelled by the javelin, the maximum height it travelled from the ground, and the time of flight.

Answer

Given:

  • initial velocity of object, u = 30 m/s
  • angle of launch, θ = 45 °
  • initial height from which the object is launched, h = 1.2 m

Calculating range (R)...

\( R = \) \( u \cdot \cos( θ ) \cdot \left( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \right) \)

\( R = \) \(30\times \cos(45°) \times \left( \frac{30\times \sin(45°) + \sqrt{ \left(30\times \sin(45°) \right)^2 + 2 \times9.81\times1.2} }{9.81} \right) \)

\( R = \) 92.9278 m

Calculating maximum height (H)...

\( H = \) \( h + \frac{ u^2 \cdot \sin^2( θ ) }{ 2 \cdot g } \)

\( H = \) \(1.2+ \frac{ u^2 \times \sin^2(45°) }{ 2 \times9.81} \)

\( H = \) 24.1358 m

Calculating time of flight (T)...

\( T = \) \( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \)

\( T = \) \( \frac{30\times \sin(45°) + \sqrt{ \left(30\times \sin(45°) \right)^2 + 2 \times9.81\times1.2} }{9.81} \)

\( T = \) 4.3807 s

2

Consider that an athlete has thrown a Javelin at an angle of 90 ° with an initial velocity of 10 m/s. The javelin is released from hand at a height of 1 m from the ground.
Calculate the horizontal distance travelled by the javelin, the maximum height it travelled from the ground, and the time of flight.

Answer

Given:

  • initial velocity of object, u = 10 m/s
  • angle of launch, θ = 90 °
  • initial height from which the object is launched, h = 1 m

Calculating range (R)...

\( R = \) \( u \cdot \cos( θ ) \cdot \left( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \right) \)

\( R = \) \(10\times \cos(90°) \times \left( \frac{10\times \sin(90°) + \sqrt{ \left(10\times \sin(90°) \right)^2 + 2 \times9.81\times1} }{9.81} \right) \)

\( R = \) 0 m

Calculating maximum height (H)...

\( H = \) \( h + \frac{ u^2 \cdot \sin^2( θ ) }{ 2 \cdot g } \)

\( H = \) \(1+ \frac{ u^2 \times \sin^2(90°) }{ 2 \times9.81} \)

\( H = \) 6.0968 m

Calculating time of flight (T)...

\( T = \) \( \frac{ u \cdot \sin( θ ) + \sqrt{ \left( u \cdot \sin( θ ) \right)^2 + 2 \cdot g \cdot h } }{ g } \)

\( T = \) \( \frac{10\times \sin(90°) + \sqrt{ \left(10\times \sin(90°) \right)^2 + 2 \times9.81\times1} }{9.81} \)

\( T = \) 2.1343 s