Convert Online Unit Length Earth's polar radius to Cubit (Greek)
Convert Earth's polar radius to Cubit (Greek)
Earth's polar radius
Earth's polar radius ResetCubit (Greek)
cubit (Greek) Copy
How to use this Earth's polar radius to Cubit (Greek) Converter 🤔 Follow these steps to convert given Earth's polar radius value from Earth's polar radius units to Cubit (Greek) units.
Enter the input Earth's polar radius value in the text field. The given Earth's polar radius is converted to Cubit (Greek) in realtime ⌚ using the formula, and displayed under the Cubit (Greek) label. You may copy the resulting Cubit (Greek) value using the Copy button. Calculation Calculation will be done after you enter a valid input.
Earth's polar radius to Cubit (Greek) Conversion TableThe following table gives some of the most used conversions from Earth's polar radius to Cubit (Greek).
Earth's polar radius (Earth's polar radius ) Cubit (Greek) (cubit (Greek) ) 0 Earth's polar radius 0 cubit (Greek) 1 Earth's polar radius 13735829.365 cubit (Greek) 2 Earth's polar radius 27471658.7299 cubit (Greek) 3 Earth's polar radius 41207488.0949 cubit (Greek) 4 Earth's polar radius 54943317.4599 cubit (Greek) 5 Earth's polar radius 68679146.8248 cubit (Greek) 6 Earth's polar radius 82414976.1898 cubit (Greek) 7 Earth's polar radius 96150805.5547 cubit (Greek) 8 Earth's polar radius 109886634.9197 cubit (Greek) 9 Earth's polar radius 123622464.2847 cubit (Greek) 10 Earth's polar radius 137358293.6496 cubit (Greek) 20 Earth's polar radius 274716587.2993 cubit (Greek) 50 Earth's polar radius 686791468.2482 cubit (Greek) 100 Earth's polar radius 1373582936.4964 cubit (Greek) 1000 Earth's polar radius 13735829364.9638 cubit (Greek) 10000 Earth's polar radius 137358293649.6379 cubit (Greek) 100000 Earth's polar radius 1373582936496.379 cubit (Greek)
Earth's polar radius The Earth's polar radius is the distance from the Earth's center to the poles. One Earth's polar radius is approximately 6,356.8 kilometers or about 3,949.9 miles.
The polar radius is shorter than the equatorial radius due to the Earth's oblate spheroid shape, which results from its rotation causing a bulge at the equator and a flattening at the poles.
The Earth's polar radius is used in geodesy, cartography, and satellite navigation to accurately describe the Earth's shape and dimensions. It is essential for understanding Earth's gravitational field, polar regions, and measurements related to the planet's overall geometry.
Cubit (Greek) A Greek cubit is an ancient unit of length used in Greece and its surrounding regions. One Greek cubit is approximately equivalent to 18.2 inches or about 0.462 meters.
The Greek cubit was used in classical Greece for various purposes, including architectural design, land measurement, and textiles. Its length was based on the distance from the elbow to the tip of the middle finger and could vary slightly depending on the historical period and specific region.
Greek cubits are of historical interest for understanding ancient Greek construction and measurement practices. Although not in common use today, the unit provides valuable insight into the standards and techniques of ancient Greek architecture and trade.
{
"conversion": "earths_polar_radius-cubits_greek",
"x_slug": "earths_polar_radius",
"y_slug": "cubits_greek",
"x": "Earth's polar radius",
"y": "cubit (Greek)",
"x_desc": "Earth's polar radius",
"y_desc": "Cubit (Greek)",
"category": "Length",
"symbol": "m",
"formula": "x / 7.28023021711901e-8",
"precision": 16,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a polar satellite orbits at a distance equal to 2.3 times Earth's polar radius.<br>Convert this distance from Earth's polar radius to Cubit (Greek).</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The length in earth's polar radius is:</p>\n <p class=\"step\"><span>Length<sub>(Earth's polar radius)</sub></span> = 2.3</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert length from earth's polar radius to cubit (greek) is:</p>\n <p class=\"formula step\"><span>Length<sub>(Cubit (Greek))</sub></span> = <span>Length<sub>(Earth's polar radius)</sub></span> / 7.28023021711901e-8</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Length<sub>(Earth's polar radius)</sub> = 2.3</strong> in the above formula.</p>\n <p class=\"step\"><span>Length<sub>(Cubit (Greek))</sub></span> = <span>2.3</span> / 7.28023021711901e-8</p>\n <p class=\"step\"><span>Length<sub>(Cubit (Greek))</sub></span> = 31592407.5394</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>2.3 Earth's polar radius</strong> is equal to <strong>31592407.5394 cubit (Greek)</strong>.</p>\n <p>The length is <strong>31592407.5394 cubit (Greek)</strong>, in cubit (greek).</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a polar ice cap extends to a height of 0.0001 times Earth's polar radius.<br>Convert this height from Earth's polar radius to Cubit (Greek).</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The length in earth's polar radius is:</p>\n <p class=\"step\"><span>Length<sub>(Earth's polar radius)</sub></span> = 0.0001</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert length from earth's polar radius to cubit (greek) is:</p>\n <p class=\"formula step\"><span>Length<sub>(Cubit (Greek))</sub></span> = <span>Length<sub>(Earth's polar radius)</sub></span> / 7.28023021711901e-8</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Length<sub>(Earth's polar radius)</sub> = 0.0001</strong> in the above formula.</p>\n <p class=\"step\"><span>Length<sub>(Cubit (Greek))</sub></span> = <span>0.0001</span> / 7.28023021711901e-8</p>\n <p class=\"step\"><span>Length<sub>(Cubit (Greek))</sub></span> = 1373.58294</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>0.0001 Earth's polar radius</strong> is equal to <strong>1373.58294 cubit (Greek)</strong>.</p>\n <p>The length is <strong>1373.58294 cubit (Greek)</strong>, in cubit (greek).</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Earth's polar radius</span> to <span class=\"y\">Cubit (Greek)</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Earth's polar radius to Cubit (Greek).</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Earth's polar radius (<span class=\"unit\">Earth's polar radius</span>)</th><th scope=\"column\" role=\"columnheader\">Cubit (Greek) (<span class=\"unit\">cubit (Greek)</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">Earth's polar radius</span></td><td>0 <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>1 <span class=\"unit\">Earth's polar radius</span></td><td>13735829<span>.365</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>2 <span class=\"unit\">Earth's polar radius</span></td><td>27471658<span>.7299</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>3 <span class=\"unit\">Earth's polar radius</span></td><td>41207488<span>.0949</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>4 <span class=\"unit\">Earth's polar radius</span></td><td>54943317<span>.4599</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>5 <span class=\"unit\">Earth's polar radius</span></td><td>68679146<span>.8248</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>6 <span class=\"unit\">Earth's polar radius</span></td><td>82414976<span>.1898</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>7 <span class=\"unit\">Earth's polar radius</span></td><td>96150805<span>.5547</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>8 <span class=\"unit\">Earth's polar radius</span></td><td>109886634<span>.9197</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>9 <span class=\"unit\">Earth's polar radius</span></td><td>123622464<span>.2847</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>10 <span class=\"unit\">Earth's polar radius</span></td><td>137358293<span>.6496</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>20 <span class=\"unit\">Earth's polar radius</span></td><td>274716587<span>.2993</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>50 <span class=\"unit\">Earth's polar radius</span></td><td>686791468<span>.2482</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>100 <span class=\"unit\">Earth's polar radius</span></td><td>1373582936<span>.4964</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>1000 <span class=\"unit\">Earth's polar radius</span></td><td>13735829364<span>.9638</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>10000 <span class=\"unit\">Earth's polar radius</span></td><td>137358293649<span>.6379</span> <span class=\"unit\">cubit (Greek)</span></td></tr><tr><td>100000 <span class=\"unit\">Earth's polar radius</span></td><td>1373582936496<span>.379</span> <span class=\"unit\">cubit (Greek)</span></td></tr></table>",
"units": [
[
"meters",
"Meters",
"m"
],
[
"kilometers",
"Kilometers",
"km"
],
[
"decimeters",
"Decimeters",
"dm"
],
[
"centimeters",
"Centimeters",
"cm"
],
[
"millimeters",
"Millimeters",
"mm"
],
[
"micrometers",
"Micrometers",
"µm"
],
[
"nanometers",
"Nanometers",
"nm"
],
[
"miles",
"Miles",
"mi"
],
[
"yards",
"Yards",
"yd"
],
[
"feet",
"Feet",
"ft"
],
[
"inches",
"Inches",
"in"
],
[
"lightyears",
"Lightyears",
"ly"
],
[
"exameters",
"Exameters",
"Em"
],
[
"petameters",
"Petameters",
"Pm"
],
[
"terameters",
"Terameters",
"Tm"
],
[
"gigameters",
"Gigameters",
"Gm"
],
[
"megameters",
"Megameters",
"Mm"
],
[
"hectometers",
"Hectameters",
"hm"
],
[
"dekameters",
"Dekameters",
"dam"
],
[
"microns",
"Microns",
"µ"
],
[
"picometers",
"Picometers",
"pm"
],
[
"femtometers",
"Femtometers",
"fm"
],
[
"attometers",
"Attometers",
"am"
],
[
"megaparsecs",
"Megaparsecs",
"Mpc"
],
[
"kiloparsecs",
"Kiloparsecs",
"kpc"
],
[
"parsecs",
"Parsecs",
"pc"
],
[
"astronomical_unit",
"Astronomical Units",
"AU"
],
[
"leagues",
"Leagues",
"lea"
],
[
"nautical_leagues_uk",
"Nautical Leagues (UK)",
"nautical league"
],
[
"nautical_leagues",
"Nautical Leagues (International)",
"nautical league"
],
[
"leagues_statute",
"Leagues (statute)",
"st.league"
],
[
"nautical_miles_uk",
"Nautical Miles (UK)",
"NM (UK)"
],
[
"nautical_miles",
"Nautical miles (International)",
"nmi"
],
[
"miles_statute",
"Miles (statute)",
"mi (US)"
],
[
"miles_us_survey",
"Miles (US survey)",
"mi"
],
[
"miles_roman",
"Miles (Roman)",
"mi (roman)"
],
[
"kiloyards",
"Kiloyards",
"kyd"
],
[
"furlongs",
"Furlongs",
"fur"
],
[
"furlongs_us_survey",
"Furlongs (US survey)",
"fur"
],
[
"chains",
"Chains",
"ch"
],
[
"chain_us_survey",
"Chains (US survey)",
"ch"
],
[
"ropes",
"Ropes",
"rope"
],
[
"rods",
"Rod",
"rd"
],
[
"rods_us_survey",
"Rods (US survey)",
"rd"
],
[
"perch",
"Perch",
"perch"
],
[
"poles",
"Poles",
"pole"
],
[
"fathoms",
"Fathoms",
"fath"
],
[
"fathoms_us_survey",
"Fathoms (US survey)",
"fath"
],
[
"ell",
"ell",
"ell"
],
[
"foot_us_survey",
"Feet (US survey)",
"ft"
],
[
"links",
"Links",
"li"
],
[
"links_us_survey",
"link (US survey)",
"li"
],
[
"cubits_uk",
"Cubits (UK)",
"cubit"
],
[
"hands",
"Hands",
"hand"
],
[
"span_cloth",
"Span (cloth)",
"span"
],
[
"fingers_cloth",
"Fingers (cloth)",
"finger"
],
[
"nails",
"Nails (cloth)",
"nail"
],
[
"inches_us_survey",
"Inches (US survey)",
"in"
],
[
"barleycorns",
"Barleycorns",
"barleycorn"
],
[
"mil",
"mil",
"mil"
],
[
"microinches",
"Microinches",
"µin"
],
[
"angstroms",
"Angstroms",
"A"
],
[
"fermi",
"Fermi",
"f"
],
[
"arpents",
"Arpent",
"arpent"
],
[
"picas",
"Pica",
"pica"
],
[
"points",
"Point",
"point"
],
[
"twips",
"Twip",
"twip"
],
[
"aln",
"aln",
"aln"
],
[
"famns",
"Famns",
"famn"
],
[
"calibers",
"Caliber",
"cl"
],
[
"centiinches",
"Centiinch",
"cin"
],
[
"kens",
"Kens",
"ken"
],
[
"russian_archin",
"Russian archin",
"russian archin"
],
[
"roman_actus",
"Roman actus",
"Roman actus"
],
[
"vara_de_tarea",
"Vara De Tarea",
"vara de tarea"
],
[
"vara_conuquera",
"Vara Conuquera",
"vara conuquera"
],
[
"vara_castellana",
"vara Castellana",
"vara castellana"
],
[
"cubits_greek",
"Cubit (Greek)",
"cubit (Greek)"
],
[
"long_reeds",
"Long Reed",
"long reed"
],
[
"reeds",
"Reed",
"reed"
],
[
"long_cubits",
"Long cubits",
"long cubit"
],
[
"handbreadths",
"Handbreadth",
"handbreadth"
],
[
"fingerbreadth",
"Fingerbreadth",
"fingerbreadth"
],
[
"planck_length",
"Planck length",
"Planck length"
],
[
"electron_radius_classical",
"Electron radius (classical) ",
"electron radius"
],
[
"bohr_radius",
"Bohr radius",
"b"
],
[
"earths_equatorial_radius",
"Earth's equatorial radius",
"earth's equatorial radius"
],
[
"earths_polar_radius",
"Earth's polar radius",
"Earth's polar radius"
],
[
"earths_distance_from_sun",
"Earth's distance from sun",
"earth's distance from sun"
],
[
"suns_radius",
"Sun's radius",
"sun's radius"
]
],
"y_long_desc": "A Greek cubit is an ancient unit of length used in Greece and its surrounding regions. One Greek cubit is approximately equivalent to 18.2 inches or about 0.462 meters. </p><p>The Greek cubit was used in classical Greece for various purposes, including architectural design, land measurement, and textiles. Its length was based on the distance from the elbow to the tip of the middle finger and could vary slightly depending on the historical period and specific region.</p><p>Greek cubits are of historical interest for understanding ancient Greek construction and measurement practices. Although not in common use today, the unit provides valuable insight into the standards and techniques of ancient Greek architecture and trade.",
"x_long_desc": "The Earth's polar radius is the distance from the Earth's center to the poles. One Earth's polar radius is approximately 6,356.8 kilometers or about 3,949.9 miles. </p><p>The polar radius is shorter than the equatorial radius due to the Earth's oblate spheroid shape, which results from its rotation causing a bulge at the equator and a flattening at the poles.</p><p>The Earth's polar radius is used in geodesy, cartography, and satellite navigation to accurately describe the Earth's shape and dimensions. It is essential for understanding Earth's gravitational field, polar regions, and measurements related to the planet's overall geometry."
}