Use this free online force converter to change giganewtons into dynes instantly. Type in the giganewtons value, and the equivalent dynes is calculated for you in real time.
to
Enter your inputs, and the result is calculated in real-time.
Giganewtons
Dynes
How to use this Giganewtons to Dynes Converter 🤔
Follow these steps to convert given Giganewtons value from Giganewtons units to Dynes units.
Enter the input Giganewtons value in the text field.
The given Giganewtons is converted to Dynes in realtime ⌚ using the formula, and displayed under the Dynes label.
You may copy the resulting Dynes value using the Copy button.
Formula
To convert given force from Giganewtons to Dynes, use the following formula.
Dynes = Giganewtons * 1e+14
Calculation
Calculation will be done after you enter a valid input.
Giganewtons
A giganewton (GN) is 109 newtons. It’s used to describe extremely large forces, such as the thrust produced by spacecraft or the force involved in geological phenomena like earthquakes. Giganewtons help put into perspective the vast power involved in significant natural or artificial forces.
Dynes
A dyne is a unit of force in the centimeter-gram-second (CGS) system, where one dyne equals 10^-5 newtons. It is often used in physics to measure small forces, such as those in fluid dynamics or material science. Although less common today, the dyne is still found in some specialized fields.
{
"conversion": "giganewton-dyne",
"x_slug": "giganewton",
"y_slug": "dyne",
"x": "GN",
"y": "dyn",
"x_desc": "Giganewtons",
"y_desc": "Dynes",
"category": "Force",
"symbol": "m",
"formula": "x * 1e+14",
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider a large rocket engine producing a thrust of 100 giganewtons.<br>Convert this thrust from giganewtons to Dynes.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The force of rocket engine in giganewtons is:</p>\n <p class=\"step\"><span>Force<sub>(Giganewtons)</sub></span> = 100</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert force from giganewtons to dynes is:</p>\n <p class=\"formula step\"><span>Force<sub>(Dynes)</sub></span> = <span>Force<sub>(Giganewtons)</sub></span> × 1e+14</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight of rocket engine, <strong>Force<sub>(Giganewtons)</sub> = 100</strong> in the above formula.</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = <span>100</span> × 1e+14</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = 10000000000000000</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>100 GN</strong> is equal to <strong>10000000000000000 dyn</strong>.</p>\n <p>The force of rocket engine is <strong>10000000000000000 dyn</strong>, in dynes.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider a superstructure experiencing 50 giganewtons of force.<br>Convert this force from giganewtons to Dynes.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The force of superstructure in giganewtons is:</p>\n <p class=\"step\"><span>Force<sub>(Giganewtons)</sub></span> = 50</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert force from giganewtons to dynes is:</p>\n <p class=\"formula step\"><span>Force<sub>(Dynes)</sub></span> = <span>Force<sub>(Giganewtons)</sub></span> × 1e+14</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight of superstructure, <strong>Force<sub>(Giganewtons)</sub> = 50</strong> in the above formula.</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = <span>50</span> × 1e+14</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = 5000000000000000</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>50 GN</strong> is equal to <strong>5000000000000000 dyn</strong>.</p>\n <p>The force of superstructure is <strong>5000000000000000 dyn</strong>, in dynes.</p>\n </div>\n ",
"units": [
[
"newton",
"Newtons",
"N"
],
[
"kilonewton",
"Kilonewtons",
"kN"
],
[
"gram-force",
"Gram-Force",
"gf"
],
[
"kilogram-force",
"Kilogram-Force",
"kgf"
],
[
"ton-force",
"Metric Ton-Force",
"tf"
],
[
"exanewton",
"Exanewtons",
"EN"
],
[
"petanewton",
"Petanewtons",
"PT"
],
[
"teranewton",
"Teranewtons",
"TN"
],
[
"giganewton",
"Giganewtons",
"GN"
],
[
"meganewton",
"Meganewtons",
"MN"
],
[
"hectonewton",
"Hectonewtons",
"hN"
],
[
"dekanewton",
"Dekanewtons",
"daN"
],
[
"decinewton",
"Decinewtons",
"dN"
],
[
"centinewton",
"Centinewtons",
"cN"
],
[
"millinewton",
"Millinewtons",
"mN"
],
[
"micronewton",
"Micronewtons",
"µN"
],
[
"nanonewton",
"Nanonewtons",
"nN"
],
[
"piconewton",
"Piconewtons",
"pN"
],
[
"femtonewton",
"Femtonewtons",
"fN"
],
[
"attonewton",
"Attonewtons",
"aN"
],
[
"dyne",
"Dynes",
"dyn"
],
[
"joule-per-meter",
"Joules per Meter",
"J/m"
],
[
"joule-per-centimeter",
"Joules per Centimeter",
"J/cm"
],
[
"ton-force-short",
"Short Ton-Force",
"short tonf"
],
[
"to-force-long",
"Long Ton-Force (UK)",
"tonf (UK)"
],
[
"kip-force",
"Kip-Force",
"kipf"
],
[
"kilopound-force",
"Kilopound-Force",
"kipf"
],
[
"pound-force",
"Pound-Force",
"lbf"
],
[
"ounce-force",
"Ounce-Force",
"ozf"
],
[
"poundal",
"Poundals",
"pdl"
],
[
"pound-foot-per-square-second",
"Pound Foot per Square Second",
"lbf·ft/s²"
],
[
"pond",
"Ponds",
"p"
],
[
"kilopond",
"Kiloponds",
"kp"
]
],
"x_long_desc": "A giganewton (GN) is 10<sup>9</sup> newtons. It’s used to describe extremely large forces, such as the thrust produced by spacecraft or the force involved in geological phenomena like earthquakes. Giganewtons help put into perspective the vast power involved in significant natural or artificial forces.",
"y_long_desc": "A dyne is a unit of force in the centimeter-gram-second (CGS) system, where one dyne equals 10^-5 newtons. It is often used in physics to measure small forces, such as those in fluid dynamics or material science. Although less common today, the dyne is still found in some specialized fields."
}