Use this free online force converter to change teranewtons into dynes instantly. Type in the teranewtons value, and the equivalent dynes is calculated for you in real time.
to
Enter your inputs, and the result is calculated in real-time.
Teranewtons
Dynes
How to use this Teranewtons to Dynes Converter 🤔
Follow these steps to convert given Teranewtons value from Teranewtons units to Dynes units.
Enter the input Teranewtons value in the text field.
The given Teranewtons is converted to Dynes in realtime ⌚ using the formula, and displayed under the Dynes label.
You may copy the resulting Dynes value using the Copy button.
Formula
To convert given force from Teranewtons to Dynes, use the following formula.
Dynes = Teranewtons * 1e+17
Calculation
Calculation will be done after you enter a valid input.
Teranewtons
A teranewton (TN) is 1012 newtons, a very large force typically used to describe large-scale astronomical phenomena or the massive forces involved in planetary activities. It’s not commonly used in everyday applications but is useful for conveying the magnitude of cosmic events.
Dynes
A dyne is a unit of force in the centimeter-gram-second (CGS) system, where one dyne equals 10^-5 newtons. It is often used in physics to measure small forces, such as those in fluid dynamics or material science. Although less common today, the dyne is still found in some specialized fields.
{
"conversion": "teranewton-dyne",
"x_slug": "teranewton",
"y_slug": "dyne",
"x": "TN",
"y": "dyn",
"x_desc": "Teranewtons",
"y_desc": "Dynes",
"category": "Force",
"symbol": "m",
"formula": "x * 1e+17",
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider a space shuttle generating a thrust force of 3 teranewtons during launch.<br>Convert this force from teranewtons to Dynes.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The force of space shuttle generating a thrust force in teranewtons is:</p>\n <p class=\"step\"><span>Force<sub>(Teranewtons)</sub></span> = 3</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert force from teranewtons to dynes is:</p>\n <p class=\"formula step\"><span>Force<sub>(Dynes)</sub></span> = <span>Force<sub>(Teranewtons)</sub></span> × 1e+17</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight of space shuttle generating a thrust force, <strong>Force<sub>(Teranewtons)</sub> = 3</strong> in the above formula.</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = <span>3</span> × 1e+17</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = 300000000000000000</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>3 TN</strong> is equal to <strong>300000000000000000 dyn</strong>.</p>\n <p>The force of space shuttle generating a thrust force is <strong>300000000000000000 dyn</strong>, in dynes.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider the force of 1 teranewton exerted by a jet engine at high altitude.<br>Convert this force from teranewtons to Dynes.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The force of jet engine exerted at high altitude in teranewtons is:</p>\n <p class=\"step\"><span>Force<sub>(Teranewtons)</sub></span> = 1</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert force from teranewtons to dynes is:</p>\n <p class=\"formula step\"><span>Force<sub>(Dynes)</sub></span> = <span>Force<sub>(Teranewtons)</sub></span> × 1e+17</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight of jet engine exerted at high altitude, <strong>Force<sub>(Teranewtons)</sub> = 1</strong> in the above formula.</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = <span>1</span> × 1e+17</p>\n <p class=\"step\"><span>Force<sub>(Dynes)</sub></span> = 100000000000000000</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>1 TN</strong> is equal to <strong>100000000000000000 dyn</strong>.</p>\n <p>The force of jet engine exerted at high altitude is <strong>100000000000000000 dyn</strong>, in dynes.</p>\n </div>\n ",
"units": [
[
"newton",
"Newtons",
"N"
],
[
"kilonewton",
"Kilonewtons",
"kN"
],
[
"gram-force",
"Gram-Force",
"gf"
],
[
"kilogram-force",
"Kilogram-Force",
"kgf"
],
[
"ton-force",
"Metric Ton-Force",
"tf"
],
[
"exanewton",
"Exanewtons",
"EN"
],
[
"petanewton",
"Petanewtons",
"PT"
],
[
"teranewton",
"Teranewtons",
"TN"
],
[
"giganewton",
"Giganewtons",
"GN"
],
[
"meganewton",
"Meganewtons",
"MN"
],
[
"hectonewton",
"Hectonewtons",
"hN"
],
[
"dekanewton",
"Dekanewtons",
"daN"
],
[
"decinewton",
"Decinewtons",
"dN"
],
[
"centinewton",
"Centinewtons",
"cN"
],
[
"millinewton",
"Millinewtons",
"mN"
],
[
"micronewton",
"Micronewtons",
"µN"
],
[
"nanonewton",
"Nanonewtons",
"nN"
],
[
"piconewton",
"Piconewtons",
"pN"
],
[
"femtonewton",
"Femtonewtons",
"fN"
],
[
"attonewton",
"Attonewtons",
"aN"
],
[
"dyne",
"Dynes",
"dyn"
],
[
"joule-per-meter",
"Joules per Meter",
"J/m"
],
[
"joule-per-centimeter",
"Joules per Centimeter",
"J/cm"
],
[
"ton-force-short",
"Short Ton-Force",
"short tonf"
],
[
"to-force-long",
"Long Ton-Force (UK)",
"tonf (UK)"
],
[
"kip-force",
"Kip-Force",
"kipf"
],
[
"kilopound-force",
"Kilopound-Force",
"kipf"
],
[
"pound-force",
"Pound-Force",
"lbf"
],
[
"ounce-force",
"Ounce-Force",
"ozf"
],
[
"poundal",
"Poundals",
"pdl"
],
[
"pound-foot-per-square-second",
"Pound Foot per Square Second",
"lbf·ft/s²"
],
[
"pond",
"Ponds",
"p"
],
[
"kilopond",
"Kiloponds",
"kp"
]
],
"x_long_desc": "A teranewton (TN) is 10<sup>12</sup> newtons, a very large force typically used to describe large-scale astronomical phenomena or the massive forces involved in planetary activities. It’s not commonly used in everyday applications but is useful for conveying the magnitude of cosmic events.",
"y_long_desc": "A dyne is a unit of force in the centimeter-gram-second (CGS) system, where one dyne equals 10^-5 newtons. It is often used in physics to measure small forces, such as those in fluid dynamics or material science. Although less common today, the dyne is still found in some specialized fields."
}