Convert Online Unit Length Twip to Sun's radius
Convert Twip to Sun's radius
Twip
twip ResetSun's radius
sun's radius Copy
How to use this Twip to Sun's radius Converter 🤔 Follow these steps to convert given Twip value from Twip units to Sun's radius units.
Enter the input Twip value in the text field. The given Twip is converted to Sun's radius in realtime ⌚ using the formula, and displayed under the Sun's radius label. You may copy the resulting Sun's radius value using the Copy button. Calculation Calculation will be done after you enter a valid input.
Twip to Sun's radius Conversion TableThe following table gives some of the most used conversions from Twip to Sun's radius.
Twip (twip ) Sun's radius (sun's radius ) 0 twip 0 sun's radius 1 twip 0 sun's radius 2 twip 0 sun's radius 3 twip 0 sun's radius 4 twip 0 sun's radius 5 twip 0 sun's radius 6 twip 0 sun's radius 7 twip 0 sun's radius 8 twip 0 sun's radius 9 twip 0 sun's radius 10 twip 0 sun's radius 20 twip 0 sun's radius 50 twip 0 sun's radius 100 twip 0 sun's radius 1000 twip 3e-11 sun's radius 10000 twip 2.5e-10 sun's radius 100000 twip 2.53e-9 sun's radius
Twip A twip is a unit of length used in digital typography and graphic design. One twip is equivalent to 1/20 of a point or approximately 1/1440 of an inch, which is about 0.0018 inches or 0.045 mm.
The twip is defined as a very small unit of measurement, providing fine granularity for specifying small increments in digital design and layout.
Twips are used in digital typography, graphic design, and computer programming to achieve precise control over the placement and spacing of text and graphical elements. The unit allows for detailed adjustments and fine-tuning in digital documents and layouts.
Sun's radius The radius of the Sun is approximately 696,340 kilometers or about 432,690 miles.
This radius represents the distance from the Sun's center to its surface, which is composed of the photosphere, the layer of the Sun that emits light. The Sun is not a perfect sphere but is slightly oblate due to its rotation.
The Sun's radius is fundamental for understanding its size, volume, and the scale of solar phenomena. It is used in astrophysics and solar studies to model the Sun's structure, energy output, and its influence on the solar system.
{
"conversion": "twips-suns_radius",
"x_slug": "twips",
"y_slug": "suns_radius",
"x": "twip",
"y": "sun's radius",
"x_desc": "Twip",
"y_desc": "Sun's radius",
"category": "Length",
"symbol": "m",
"formula": "x / 39458267722022.32",
"precision": 16,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a software application uses 1440 twips to define the height of a window.<br>Convert this height from twips to Sun's radius.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The length in twip is:</p>\n <p class=\"step\"><span>Length<sub>(Twip)</sub></span> = 1440</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert length from twip to sun's radius is:</p>\n <p class=\"formula step\"><span>Length<sub>(Sun's radius)</sub></span> = <span>Length<sub>(Twip)</sub></span> / 39458267722022.32</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Length<sub>(Twip)</sub> = 1440</strong> in the above formula.</p>\n <p class=\"step\"><span>Length<sub>(Sun's radius)</sub></span> = <span>1440</span> / 39458267722022.32</p>\n <p class=\"step\"><span>Length<sub>(Sun's radius)</sub></span> = 3.64943e-11</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>1440 twip</strong> is equal to <strong>3.64943e-11 sun's radius</strong>.</p>\n <p>The length is <strong>3.64943e-11 sun's radius</strong>, in sun's radius.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a custom user interface element is sized at 720 twips.<br>Convert this size from twips to Sun's radius.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The length in twip is:</p>\n <p class=\"step\"><span>Length<sub>(Twip)</sub></span> = 720</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert length from twip to sun's radius is:</p>\n <p class=\"formula step\"><span>Length<sub>(Sun's radius)</sub></span> = <span>Length<sub>(Twip)</sub></span> / 39458267722022.32</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Length<sub>(Twip)</sub> = 720</strong> in the above formula.</p>\n <p class=\"step\"><span>Length<sub>(Sun's radius)</sub></span> = <span>720</span> / 39458267722022.32</p>\n <p class=\"step\"><span>Length<sub>(Sun's radius)</sub></span> = 1.82471e-11</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>720 twip</strong> is equal to <strong>1.82471e-11 sun's radius</strong>.</p>\n <p>The length is <strong>1.82471e-11 sun's radius</strong>, in sun's radius.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Twip</span> to <span class=\"y\">Sun's radius</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Twip to Sun's radius.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Twip (<span class=\"unit\">twip</span>)</th><th scope=\"column\" role=\"columnheader\">Sun's radius (<span class=\"unit\">sun's radius</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>1 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>2 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>3 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>4 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>5 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>6 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>7 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>8 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>9 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>10 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>20 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>50 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>100 <span class=\"unit\">twip</span></td><td>0 <span class=\"unit\">sun's radius</span></td></tr><tr><td>1000 <span class=\"unit\">twip</span></td><td>3e-11 <span class=\"unit\">sun's radius</span></td></tr><tr><td>10000 <span class=\"unit\">twip</span></td><td>2<span>.5e-10</span> <span class=\"unit\">sun's radius</span></td></tr><tr><td>100000 <span class=\"unit\">twip</span></td><td>2<span>.53e-9</span> <span class=\"unit\">sun's radius</span></td></tr></table>",
"units": [
[
"meters",
"Meters",
"m"
],
[
"kilometers",
"Kilometers",
"km"
],
[
"decimeters",
"Decimeters",
"dm"
],
[
"centimeters",
"Centimeters",
"cm"
],
[
"millimeters",
"Millimeters",
"mm"
],
[
"micrometers",
"Micrometers",
"µm"
],
[
"nanometers",
"Nanometers",
"nm"
],
[
"miles",
"Miles",
"mi"
],
[
"yards",
"Yards",
"yd"
],
[
"feet",
"Feet",
"ft"
],
[
"inches",
"Inches",
"in"
],
[
"lightyears",
"Lightyears",
"ly"
],
[
"exameters",
"Exameters",
"Em"
],
[
"petameters",
"Petameters",
"Pm"
],
[
"terameters",
"Terameters",
"Tm"
],
[
"gigameters",
"Gigameters",
"Gm"
],
[
"megameters",
"Megameters",
"Mm"
],
[
"hectometers",
"Hectameters",
"hm"
],
[
"dekameters",
"Dekameters",
"dam"
],
[
"microns",
"Microns",
"µ"
],
[
"picometers",
"Picometers",
"pm"
],
[
"femtometers",
"Femtometers",
"fm"
],
[
"attometers",
"Attometers",
"am"
],
[
"megaparsecs",
"Megaparsecs",
"Mpc"
],
[
"kiloparsecs",
"Kiloparsecs",
"kpc"
],
[
"parsecs",
"Parsecs",
"pc"
],
[
"astronomical_unit",
"Astronomical Units",
"AU"
],
[
"leagues",
"Leagues",
"lea"
],
[
"nautical_leagues_uk",
"Nautical Leagues (UK)",
"nautical league"
],
[
"nautical_leagues",
"Nautical Leagues (International)",
"nautical league"
],
[
"leagues_statute",
"Leagues (statute)",
"st.league"
],
[
"nautical_miles_uk",
"Nautical Miles (UK)",
"NM (UK)"
],
[
"nautical_miles",
"Nautical miles (International)",
"nmi"
],
[
"miles_statute",
"Miles (statute)",
"mi (US)"
],
[
"miles_us_survey",
"Miles (US survey)",
"mi"
],
[
"miles_roman",
"Miles (Roman)",
"mi (roman)"
],
[
"kiloyards",
"Kiloyards",
"kyd"
],
[
"furlongs",
"Furlongs",
"fur"
],
[
"furlongs_us_survey",
"Furlongs (US survey)",
"fur"
],
[
"chains",
"Chains",
"ch"
],
[
"chain_us_survey",
"Chains (US survey)",
"ch"
],
[
"ropes",
"Ropes",
"rope"
],
[
"rods",
"Rod",
"rd"
],
[
"rods_us_survey",
"Rods (US survey)",
"rd"
],
[
"perch",
"Perch",
"perch"
],
[
"poles",
"Poles",
"pole"
],
[
"fathoms",
"Fathoms",
"fath"
],
[
"fathoms_us_survey",
"Fathoms (US survey)",
"fath"
],
[
"ell",
"ell",
"ell"
],
[
"foot_us_survey",
"Feet (US survey)",
"ft"
],
[
"links",
"Links",
"li"
],
[
"links_us_survey",
"link (US survey)",
"li"
],
[
"cubits_uk",
"Cubits (UK)",
"cubit"
],
[
"hands",
"Hands",
"hand"
],
[
"span_cloth",
"Span (cloth)",
"span"
],
[
"fingers_cloth",
"Fingers (cloth)",
"finger"
],
[
"nails",
"Nails (cloth)",
"nail"
],
[
"inches_us_survey",
"Inches (US survey)",
"in"
],
[
"barleycorns",
"Barleycorns",
"barleycorn"
],
[
"mil",
"mil",
"mil"
],
[
"microinches",
"Microinches",
"µin"
],
[
"angstroms",
"Angstroms",
"A"
],
[
"fermi",
"Fermi",
"f"
],
[
"arpents",
"Arpent",
"arpent"
],
[
"picas",
"Pica",
"pica"
],
[
"points",
"Point",
"point"
],
[
"twips",
"Twip",
"twip"
],
[
"aln",
"aln",
"aln"
],
[
"famns",
"Famns",
"famn"
],
[
"calibers",
"Caliber",
"cl"
],
[
"centiinches",
"Centiinch",
"cin"
],
[
"kens",
"Kens",
"ken"
],
[
"russian_archin",
"Russian archin",
"russian archin"
],
[
"roman_actus",
"Roman actus",
"Roman actus"
],
[
"vara_de_tarea",
"Vara De Tarea",
"vara de tarea"
],
[
"vara_conuquera",
"Vara Conuquera",
"vara conuquera"
],
[
"vara_castellana",
"vara Castellana",
"vara castellana"
],
[
"cubits_greek",
"Cubit (Greek)",
"cubit (Greek)"
],
[
"long_reeds",
"Long Reed",
"long reed"
],
[
"reeds",
"Reed",
"reed"
],
[
"long_cubits",
"Long cubits",
"long cubit"
],
[
"handbreadths",
"Handbreadth",
"handbreadth"
],
[
"fingerbreadth",
"Fingerbreadth",
"fingerbreadth"
],
[
"planck_length",
"Planck length",
"Planck length"
],
[
"electron_radius_classical",
"Electron radius (classical) ",
"electron radius"
],
[
"bohr_radius",
"Bohr radius",
"b"
],
[
"earths_equatorial_radius",
"Earth's equatorial radius",
"earth's equatorial radius"
],
[
"earths_polar_radius",
"Earth's polar radius",
"Earth's polar radius"
],
[
"earths_distance_from_sun",
"Earth's distance from sun",
"earth's distance from sun"
],
[
"suns_radius",
"Sun's radius",
"sun's radius"
]
],
"x_long_desc": "A twip is a unit of length used in digital typography and graphic design. One twip is equivalent to 1/20 of a point or approximately 1/1440 of an inch, which is about 0.0018 inches or 0.045 mm. </p><p>The twip is defined as a very small unit of measurement, providing fine granularity for specifying small increments in digital design and layout.</p><p>Twips are used in digital typography, graphic design, and computer programming to achieve precise control over the placement and spacing of text and graphical elements. The unit allows for detailed adjustments and fine-tuning in digital documents and layouts.",
"y_long_desc": "The radius of the Sun is approximately 696,340 kilometers or about 432,690 miles. </p><p>This radius represents the distance from the Sun's center to its surface, which is composed of the photosphere, the layer of the Sun that emits light. The Sun is not a perfect sphere but is slightly oblate due to its rotation.</p><p>The Sun's radius is fundamental for understanding its size, volume, and the scale of solar phenomena. It is used in astrophysics and solar studies to model the Sun's structure, energy output, and its influence on the solar system."
}