Convert Online Mathematics Geometry Sector Calculator
Sector Calculator Calculate Sector Calculator
Enter any two inputs and click on Calculate button
How to use this Sector Calculator 🤔 There are input fields for radius \((r)\) , angle of sector \((θ)\) , Arc Length \((l)\) , Area \((A)\) , and Perimeter \((P)\) . Enter any two inputs and click on Calculate button. The calculator uses the formula, substitues given values, and calcuates the missing value. The missing value is calcuated and displayed in the input field. Also, the caculation is displayed under the input section.
Geometry Calculators Rectangle Calculators
Square Calculators
Circle Calculators
Semi-Circle Calculators
Sector Calculators
Ellipse Calculators
Triangle Calculators
Right Triangle Calculators
Equilateral Triangle Calculators
Trapezoid Calculators
Rhombus Calculators
Parallelogram Calculators
Kite Calculators
Quadrilateral Calculators
Pentagon Calculators
Hexagon Calculators
Cube Calculators
Cuboid Calculators
Tetrahedron Calculators
Cylinder Calculators
Cone Calculators
Sphere Calculators
{
"topic": "sector",
"input_types": [
"float",
"float",
"float",
"float",
"float"
],
"input_labels": [
"r",
"θ",
"l",
"A",
"P"
],
"input_descriptions": [
"radius",
"angle of sector",
"Arc Length",
"Area",
"Perimeter"
],
"input_units": [
"units",
"degrees",
"units",
"sq. units",
"units"
],
"input_values": [
"",
"",
"",
"",
""
],
"input_pre_msg": "Enter any two inputs and click on Calculate button",
"type": "Calculate",
"title": "Sector Calculator",
"description": "Use our Sector Calculator to easily calculate radius, angle of sector, length of arc, area, and permimeter of a Sector easily, given only two of these parameters.",
"category": "Geometry",
"shape": "Sector",
"template": "mathematics_multiple_outputs",
"formulas": [
{
"parameters": [
"r",
"θ"
],
"outputs": [
{
"label": "l",
"formula": " r * θ * ( Math.PI / 180 ) ",
"formula_mathjax": "\\( r \\theta \\frac{\\pi}{180} \\)"
},
{
"label": "A",
"formula": " (1 / 2) * r * r * θ * ( Math.PI / 180 ) ",
"formula_mathjax": "\\( \\frac{1}{2} r^2 \\theta \\frac{\\pi}{180} \\)"
},
{
"label": "P",
"formula": " r * θ * ( Math.PI / 180 ) + 2 * r ",
"formula_mathjax": "\\( r \\theta \\frac{\\pi}{180} + 2r \\)"
}
]
},
{
"parameters": [
"r",
"l"
],
"outputs": [
{
"label": "θ",
"formula": " ( l / r ) * ( 180 / Math.PI ) ",
"formula_mathjax": "\\( \\frac{l}{r} \\frac{180}{\\pi} \\)"
},
{
"label": "A",
"formula": " (1 / 2) * r * l ",
"formula_mathjax": "\\( \\frac{1}{2} r l \\)"
},
{
"label": "P",
"formula": " l + 2 * r ",
"formula_mathjax": "\\( l + 2r \\)"
}
]
},
{
"parameters": [
"r",
"A"
],
"outputs": [
{
"label": "θ",
"formula": " ( 2 * A ) / ( r * r ) * ( 180 / Math.PI ) ",
"formula_mathjax": "\\( \\frac{2A}{r^2} \\frac{180}{\\pi} \\)"
},
{
"label": "l",
"formula": " ( 2 * A ) / r ",
"formula_mathjax": "\\( \\frac{2A}{r} \\)"
},
{
"label": "P",
"formula": " r * θ * ( Math.PI / 180 ) + 2 * r ",
"formula_mathjax": "\\( r \\theta \\frac{\\pi}{180} + 2r \\)"
}
]
},
{
"parameters": [
"r",
"P"
],
"outputs": [
{
"label": "θ",
"formula": " ( P - 2 * r ) / r * ( 180 / Math.PI ) ",
"formula_mathjax": "\\( \\frac{P - 2r}{r} \\frac{180}{\\pi} \\)"
},
{
"label": "l",
"formula": " P - 2 * r ",
"formula_mathjax": "\\( P - 2r \\)"
},
{
"label": "A",
"formula": " (1 / 2) * r * l ",
"formula_mathjax": "\\( \\frac{1}{2} r l \\)"
}
]
},
{
"parameters": [
"θ",
"l"
],
"outputs": [
{
"label": "r",
"formula": " l / ( θ * ( Math.PI / 180 ) ) ",
"formula_mathjax": "\\( \\frac{l}{\\theta \\frac{\\pi}{180}} \\)"
},
{
"label": "A",
"formula": " (1 / 2) * ( l / ( θ * ( Math.PI / 180 ) ) ) * l ",
"formula_mathjax": "\\( \\frac{1}{2} \\left( \\frac{l}{\\theta \\frac{\\pi}{180}} \\right) l \\)"
},
{
"label": "P",
"formula": " l + 2 * ( l / ( θ * ( Math.PI / 180 ) ) ) ",
"formula_mathjax": "\\( l + 2 \\left( \\frac{l}{\\theta \\frac{\\pi}{180}} \\right) \\)"
}
]
},
{
"parameters": [
"θ",
"A"
],
"outputs": [
{
"label": "r",
"formula": " Math.sqrt( ( 2 * A ) / ( θ * ( Math.PI / 180 ) ) ) ",
"formula_mathjax": "\\( \\sqrt{ \\frac{2A}{\\theta \\frac{\\pi}{180}} } \\)"
},
{
"label": "l",
"formula": " r * θ * ( Math.PI / 180 ) ",
"formula_mathjax": "\\( r \\theta \\frac{\\pi}{180} \\)"
},
{
"label": "P",
"formula": " r * θ * ( Math.PI / 180 ) + 2 * r ",
"formula_mathjax": "\\( r \\theta \\frac{\\pi}{180} + 2r \\)"
}
]
},
{
"parameters": [
"θ",
"P"
],
"outputs": [
{
"label": "r",
"formula": " P / ( θ * ( Math.PI / 180 ) + 2 ) ",
"formula_mathjax": "\\( \\frac{P}{\\theta \\frac{\\pi}{180} + 2} \\)"
},
{
"label": "l",
"formula": " r * θ * ( Math.PI / 180 ) ",
"formula_mathjax": "\\( r \\theta \\frac{\\pi}{180} \\)"
},
{
"label": "A",
"formula": " (1 / 2) * r * r * θ * ( Math.PI / 180 ) ",
"formula_mathjax": "\\( \\frac{1}{2} r^2 \\theta \\frac{\\pi}{180} \\)"
}
]
},
{
"parameters": [
"l",
"A"
],
"outputs": [
{
"label": "r",
"formula": " ( 2 * A ) / l ",
"formula_mathjax": "\\( \\frac{2A}{l} \\)"
},
{
"label": "θ",
"formula": " l / r * ( 180 / Math.PI ) ",
"formula_mathjax": "\\( \\frac{l}{r} \\frac{180}{\\pi} \\)"
},
{
"label": "P",
"formula": " l + 2 * r ",
"formula_mathjax": "\\( l + 2r \\)"
}
]
},
{
"parameters": [
"l",
"P"
],
"outputs": [
{
"label": "r",
"formula": " ( P - l ) / 2 ",
"formula_mathjax": "\\( \\frac{P - l}{2} \\)"
},
{
"label": "θ",
"formula": " l / r * ( 180 / Math.PI ) ",
"formula_mathjax": "\\( \\frac{l}{r} \\frac{180}{\\pi} \\)"
},
{
"label": "A",
"formula": " (1 / 2) * r * l ",
"formula_mathjax": "\\( \\frac{1}{2} r l \\)"
}
]
},
{
"parameters": [
"A",
"P"
],
"outputs": [
{
"label": "r",
"formula": " ( P + Math.sqrt( P * P - 16 * A ))/4 ",
"formula_mathjax": "\\( ( -P + \\sqrt{P^2 - 16 A})/4 \\)"
},
{
"label": "θ",
"formula": "( 2 * A / ( r * r )) * (180 / Math.PI ) ",
"formula_mathjax": "\\( \\frac{2A}{r^2} \\frac{180}{\\pi} \\)"
},
{
"label": "l",
"formula": " r * θ * ( Math.PI / 180 ) ",
"formula_mathjax": "\\( r \\theta \\frac{\\pi}{180} \\)"
}
]
}
]
}