How to use this Binary Degrees to Radians Converter 🤔
Follow these steps to convert given Binary Degrees value from Binary Degrees units to Radians units.
Enter the input Binary Degrees value in the text field.
The given Binary Degrees is converted to Radians in realtime ⌚ using the formula, and displayed under the Radians label.
You may copy the resulting Radians value using the Copy button.
Formula
To convert given angle from Binary Degrees to Radians, use the following formula.
Radians = Binary Degrees * π / 128
Calculation
Calculation will be done after you enter a valid input.
Binary Degrees to Radians Conversion Table
The following table gives some of the most used conversions from Binary Degrees to Radians.
Binary Degrees (°)
Radians (rad)
0 °
0 rad
1 °
0.02454369261rad
10 °
0.2454rad
45 °
1.1045rad
90 °
2.2089rad
180 °
4.4179rad
360 °
8.8357rad
1000 °
24.5437rad
Binary Degrees
Binary degrees, or 'binary angles,' are a unit of angular measurement used in digital systems where angles are represented using binary numbers. This system is particularly useful in computer graphics, robotics, and digital signal processing, where binary calculations are more efficient than traditional degrees.
Radians
Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.
{
"conversion": "binary_degrees-radians",
"x_slug": "binary_degrees",
"y_slug": "radians",
"x": "°",
"y": "rad",
"x_desc": "Binary Degrees",
"y_desc": "Radians",
"category": "Angle",
"symbol": "m",
"formula": "x * π / 128",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a digital compass in a drone reads 90 binary degrees for navigation.<br>Convert this angle from binary degrees to Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in binary degrees is:</p>\n <p class=\"step\"><span>Angle<sub>(Binary Degrees)</sub></span> = 90</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from binary degrees to radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Radians)</sub></span> = <span>Angle<sub>(Binary Degrees)</sub></span> × π / 128</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Binary Degrees)</sub> = 90</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = <span>90</span> × 3.14159265359 / 128</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 2.2089</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>90 °</strong> is equal to <strong>2.2089 rad</strong>.</p>\n <p>The angle is <strong>2.2089 rad</strong>, in radians.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that the rotation needed for a robotic arm is 180 binary degrees.<br>Convert this angle from binary degrees to Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in binary degrees is:</p>\n <p class=\"step\"><span>Angle<sub>(Binary Degrees)</sub></span> = 180</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from binary degrees to radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Radians)</sub></span> = <span>Angle<sub>(Binary Degrees)</sub></span> × π / 128</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Binary Degrees)</sub> = 180</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = <span>180</span> × 3.14159265359 / 128</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 4.4179</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>180 °</strong> is equal to <strong>4.4179 rad</strong>.</p>\n <p>The angle is <strong>4.4179 rad</strong>, in radians.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Binary Degrees</span> to <span class=\"y\">Radians</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Binary Degrees to Radians.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Binary Degrees (<span class=\"unit\">°</span>)</th><th scope=\"column\" role=\"columnheader\">Radians (<span class=\"unit\">rad</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">°</span></td><td>0 <span class=\"unit\">rad</span></td></tr><tr><td>1 <span class=\"unit\">°</span></td><td>0<span>.02454369261</span> <span class=\"unit\">rad</span></td></tr><tr><td>10 <span class=\"unit\">°</span></td><td>0<span>.2454</span> <span class=\"unit\">rad</span></td></tr><tr><td>45 <span class=\"unit\">°</span></td><td>1<span>.1045</span> <span class=\"unit\">rad</span></td></tr><tr><td>90 <span class=\"unit\">°</span></td><td>2<span>.2089</span> <span class=\"unit\">rad</span></td></tr><tr><td>180 <span class=\"unit\">°</span></td><td>4<span>.4179</span> <span class=\"unit\">rad</span></td></tr><tr><td>360 <span class=\"unit\">°</span></td><td>8<span>.8357</span> <span class=\"unit\">rad</span></td></tr><tr><td>1000 <span class=\"unit\">°</span></td><td>24<span>.5437</span> <span class=\"unit\">rad</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"π Radians",
"π radians"
],
[
"zam",
"Zam",
"zam"
]
],
"y_long_desc": "Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.",
"x_long_desc": "Binary degrees, or 'binary angles,' are a unit of angular measurement used in digital systems where angles are represented using binary numbers. This system is particularly useful in computer graphics, robotics, and digital signal processing, where binary calculations are more efficient than traditional degrees."
}