Follow these steps to convert given Circles value from Circles units to π Radians units.
Enter the input Circles value in the text field.
The given Circles is converted to π Radians in realtime ⌚ using the formula, and displayed under the π Radians label.
You may copy the resulting π Radians value using the Copy button.
Formula
To convert given angle from Circles to π Radians, use the following formula.
π Radians = Circles * 2
Calculation
Calculation will be done after you enter a valid input.
Circles to π Radians Conversion Table
The following table gives some of the most used conversions from Circles to π Radians.
Circles (circle)
π Radians (π radians)
0 circle
0 π radians
1 circle
2 π radians
10 circle
20 π radians
45 circle
90 π radians
90 circle
180 π radians
180 circle
360 π radians
360 circle
720 π radians
1000 circle
2000 π radians
Circles
Circles, in the context of angular measurement, refer to a full rotation or turn, equivalent to 360 degrees or one complete revolution. This unit is often used in discussions of periodic motion, waveforms, and cyclic processes, where the concept of a full rotation is integral to understanding patterns and cycles.
π Radians
π radians represent a half-circle or 180 degrees. This unit is fundamental in mathematics, particularly in trigonometry and calculus, where the relationship between angles and the properties of circles is central to many concepts. The use of π radians simplifies the representation of angles and the formulation of trigonometric functions.
{
"conversion": "circles-pi_radians",
"x_slug": "circles",
"y_slug": "pi_radians",
"x": "circle",
"y": "π radians",
"x_desc": "Circles",
"y_desc": "π Radians",
"category": "Angle",
"symbol": "m",
"formula": "x * 2",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a Ferris wheel rotates through 0.5 circles during one ride.<br>Convert this rotation from circles to π Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in circles is:</p>\n <p class=\"step\"><span>Angle<sub>(Circles)</sub></span> = 0.5</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from circles to π radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(π Radians)</sub></span> = <span>Angle<sub>(Circles)</sub></span> × 2</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Circles)</sub> = 0.5</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = <span>0.5</span> × 2</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = 1</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>0.5 circle</strong> is equal to <strong>1 π radians</strong>.</p>\n <p>The angle is <strong>1 π radians</strong>, in π radians.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a drone completes 3 circles in the air during a maneuver.<br>Convert this rotation from circles to π Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in circles is:</p>\n <p class=\"step\"><span>Angle<sub>(Circles)</sub></span> = 3</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from circles to π radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(π Radians)</sub></span> = <span>Angle<sub>(Circles)</sub></span> × 2</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Circles)</sub> = 3</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = <span>3</span> × 2</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = 6</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>3 circle</strong> is equal to <strong>6 π radians</strong>.</p>\n <p>The angle is <strong>6 π radians</strong>, in π radians.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Circles</span> to <span class=\"y\">π Radians</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Circles to π Radians.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Circles (<span class=\"unit\">circle</span>)</th><th scope=\"column\" role=\"columnheader\">π Radians (<span class=\"unit\">π radians</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">circle</span></td><td>0 <span class=\"unit\">π radians</span></td></tr><tr><td>1 <span class=\"unit\">circle</span></td><td>2 <span class=\"unit\">π radians</span></td></tr><tr><td>10 <span class=\"unit\">circle</span></td><td>20 <span class=\"unit\">π radians</span></td></tr><tr><td>45 <span class=\"unit\">circle</span></td><td>90 <span class=\"unit\">π radians</span></td></tr><tr><td>90 <span class=\"unit\">circle</span></td><td>180 <span class=\"unit\">π radians</span></td></tr><tr><td>180 <span class=\"unit\">circle</span></td><td>360 <span class=\"unit\">π radians</span></td></tr><tr><td>360 <span class=\"unit\">circle</span></td><td>720 <span class=\"unit\">π radians</span></td></tr><tr><td>1000 <span class=\"unit\">circle</span></td><td>2000 <span class=\"unit\">π radians</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"π Radians",
"π radians"
],
[
"zam",
"Zam",
"zam"
]
],
"x_long_desc": "Circles, in the context of angular measurement, refer to a full rotation or turn, equivalent to 360 degrees or one complete revolution. This unit is often used in discussions of periodic motion, waveforms, and cyclic processes, where the concept of a full rotation is integral to understanding patterns and cycles.",
"y_long_desc": "π radians represent a half-circle or 180 degrees. This unit is fundamental in mathematics, particularly in trigonometry and calculus, where the relationship between angles and the properties of circles is central to many concepts. The use of π radians simplifies the representation of angles and the formulation of trigonometric functions."
}