Follow these steps to convert given π Radians value from π Radians units to Minutes units.
Enter the input π Radians value in the text field.
The given π Radians is converted to Minutes in realtime ⌚ using the formula, and displayed under the Minutes label.
You may copy the resulting Minutes value using the Copy button.
Formula
To convert given angle from π Radians to Minutes, use the following formula.
Minutes = π Radians * 10800
Calculation
Calculation will be done after you enter a valid input.
π Radians to Minutes Conversion Table
The following table gives some of the most used conversions from π Radians to Minutes.
π Radians (π radians)
Minutes (')
0 π radians
0 '
1 π radians
10800 '
10 π radians
108000 '
45 π radians
486000 '
90 π radians
972000 '
180 π radians
1944000 '
360 π radians
3888000 '
1000 π radians
10800000 '
π Radians
π radians represent a half-circle or 180 degrees. This unit is fundamental in mathematics, particularly in trigonometry and calculus, where the relationship between angles and the properties of circles is central to many concepts. The use of π radians simplifies the representation of angles and the formulation of trigonometric functions.
Minutes
Minutes of arc are a finer subdivision of degrees, with 60 minutes making up one degree. Each minute is further divided into 60 seconds of arc. This unit allows for precise angular measurements and is commonly used in fields like astronomy, navigation, and geodesy, where detailed accuracy is required for mapping and celestial observations.
{
"conversion": "pi_radians-minutes",
"x_slug": "pi_radians",
"y_slug": "minutes",
"x": "π radians",
"y": "'",
"x_desc": "π Radians",
"y_desc": "Minutes",
"category": "Angle",
"symbol": "m",
"formula": "x * 10800",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a circle's rotation is measured at 2 pi radians.<br>Convert this rotation from pi radians to Minutes.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in π radians is:</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = 2</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from π radians to minutes is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Minutes)</sub></span> = <span>Angle<sub>(π Radians)</sub></span> × 10800</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(π Radians)</sub> = 2</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Minutes)</sub></span> = <span>2</span> × 10800</p>\n <p class=\"step\"><span>Angle<sub>(Minutes)</sub></span> = 21600</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>2 π radians</strong> is equal to <strong>21600 '</strong>.</p>\n <p>The angle is <strong>21600 '</strong>, in minutes.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a pendulum swings through 0.5 pi radians.<br>Convert this angle from pi radians to Minutes.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in π radians is:</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = 0.5</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from π radians to minutes is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Minutes)</sub></span> = <span>Angle<sub>(π Radians)</sub></span> × 10800</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(π Radians)</sub> = 0.5</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Minutes)</sub></span> = <span>0.5</span> × 10800</p>\n <p class=\"step\"><span>Angle<sub>(Minutes)</sub></span> = 5400</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>0.5 π radians</strong> is equal to <strong>5400 '</strong>.</p>\n <p>The angle is <strong>5400 '</strong>, in minutes.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">π Radians</span> to <span class=\"y\">Minutes</span> Conversion Table</h2><p>The following table gives some of the most used conversions from π Radians to Minutes.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">π Radians (<span class=\"unit\">π radians</span>)</th><th scope=\"column\" role=\"columnheader\">Minutes (<span class=\"unit\">'</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">π radians</span></td><td>0 <span class=\"unit\">'</span></td></tr><tr><td>1 <span class=\"unit\">π radians</span></td><td>10800 <span class=\"unit\">'</span></td></tr><tr><td>10 <span class=\"unit\">π radians</span></td><td>108000 <span class=\"unit\">'</span></td></tr><tr><td>45 <span class=\"unit\">π radians</span></td><td>486000 <span class=\"unit\">'</span></td></tr><tr><td>90 <span class=\"unit\">π radians</span></td><td>972000 <span class=\"unit\">'</span></td></tr><tr><td>180 <span class=\"unit\">π radians</span></td><td>1944000 <span class=\"unit\">'</span></td></tr><tr><td>360 <span class=\"unit\">π radians</span></td><td>3888000 <span class=\"unit\">'</span></td></tr><tr><td>1000 <span class=\"unit\">π radians</span></td><td>10800000 <span class=\"unit\">'</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"π Radians",
"π radians"
],
[
"zam",
"Zam",
"zam"
]
],
"y_long_desc": "Minutes of arc are a finer subdivision of degrees, with 60 minutes making up one degree. Each minute is further divided into 60 seconds of arc. This unit allows for precise angular measurements and is commonly used in fields like astronomy, navigation, and geodesy, where detailed accuracy is required for mapping and celestial observations.",
"x_long_desc": "π radians represent a half-circle or 180 degrees. This unit is fundamental in mathematics, particularly in trigonometry and calculus, where the relationship between angles and the properties of circles is central to many concepts. The use of π radians simplifies the representation of angles and the formulation of trigonometric functions."
}