How to use this Quadrants to Radians Converter 🤔
Follow these steps to convert given Quadrants value from Quadrants units to Radians units.
Enter the input Quadrants value in the text field.
The given Quadrants is converted to Radians in realtime ⌚ using the formula, and displayed under the Radians label.
You may copy the resulting Radians value using the Copy button.
Formula
To convert given angle from Quadrants to Radians, use the following formula.
Radians = Quadrants * π / 2
Calculation
Calculation will be done after you enter a valid input.
Quadrants to Radians Conversion Table
The following table gives some of the most used conversions from Quadrants to Radians.
Quadrants (quadrant)
Radians (rad)
0 quadrant
0 rad
1 quadrant
1.5708rad
10 quadrant
15.708rad
45 quadrant
70.6858rad
90 quadrant
141.3717rad
180 quadrant
282.7433rad
360 quadrant
565.4867rad
1000 quadrant
1570.7963rad
Quadrants
Quadrants are a unit of angular measurement representing one-quarter of a full circle, equivalent to 90 degrees or π/2 radians. Quadrants are commonly used in geometry, astronomy, and navigation to describe and analyze positions, angles, and directional orientations within a defined space.
Radians
Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.
{
"conversion": "quadrants-radians",
"x_slug": "quadrants",
"y_slug": "radians",
"x": "quadrant",
"y": "rad",
"x_desc": "Quadrants",
"y_desc": "Radians",
"category": "Angle",
"symbol": "m",
"formula": "x * π / 2",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a map is divided into 4 quadrants for detailed navigation.<br>Convert this section from quadrants to Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in quadrants is:</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = 1</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from quadrants to radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Radians)</sub></span> = <span>Angle<sub>(Quadrants)</sub></span> × Ï€ / 2</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Quadrants)</sub> = 1</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = <span>1</span> × 3.14159265359 / 2</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 1.5708</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>1 quadrant</strong> is equal to <strong>1.5708 rad</strong>.</p>\n <p>The angle is <strong>1.5708 rad</strong>, in radians.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a pilot uses 2 quadrants to determine the aircraft's position.<br>Convert this section from quadrants to Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in quadrants is:</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = 2</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from quadrants to radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Radians)</sub></span> = <span>Angle<sub>(Quadrants)</sub></span> × Ï€ / 2</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Quadrants)</sub> = 2</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = <span>2</span> × 3.14159265359 / 2</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 3.1416</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>2 quadrant</strong> is equal to <strong>3.1416 rad</strong>.</p>\n <p>The angle is <strong>3.1416 rad</strong>, in radians.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Quadrants</span> to <span class=\"y\">Radians</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Quadrants to Radians.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Quadrants (<span class=\"unit\">quadrant</span>)</th><th scope=\"column\" role=\"columnheader\">Radians (<span class=\"unit\">rad</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">quadrant</span></td><td>0 <span class=\"unit\">rad</span></td></tr><tr><td>1 <span class=\"unit\">quadrant</span></td><td>1<span>.5708</span> <span class=\"unit\">rad</span></td></tr><tr><td>10 <span class=\"unit\">quadrant</span></td><td>15<span>.708</span> <span class=\"unit\">rad</span></td></tr><tr><td>45 <span class=\"unit\">quadrant</span></td><td>70<span>.6858</span> <span class=\"unit\">rad</span></td></tr><tr><td>90 <span class=\"unit\">quadrant</span></td><td>141<span>.3717</span> <span class=\"unit\">rad</span></td></tr><tr><td>180 <span class=\"unit\">quadrant</span></td><td>282<span>.7433</span> <span class=\"unit\">rad</span></td></tr><tr><td>360 <span class=\"unit\">quadrant</span></td><td>565<span>.4867</span> <span class=\"unit\">rad</span></td></tr><tr><td>1000 <span class=\"unit\">quadrant</span></td><td>1570<span>.7963</span> <span class=\"unit\">rad</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"Ï€ Radians",
"Ï€ radians"
],
[
"zam",
"Zam",
"zam"
]
],
"y_long_desc": "Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.",
"x_long_desc": "Quadrants are a unit of angular measurement representing one-quarter of a full circle, equivalent to 90 degrees or π/2 radians. Quadrants are commonly used in geometry, astronomy, and navigation to describe and analyze positions, angles, and directional orientations within a defined space."
}