Follow these steps to convert given Quadrants value from Quadrants units to Turns units.
Enter the input Quadrants value in the text field.
The given Quadrants is converted to Turns in realtime ⌚ using the formula, and displayed under the Turns label.
You may copy the resulting Turns value using the Copy button.
Formula
To convert given angle from Quadrants to Turns, use the following formula.
Turns = Quadrants / 4
Calculation
Calculation will be done after you enter a valid input.
Quadrants to Turns Conversion Table
The following table gives some of the most used conversions from Quadrants to Turns.
Quadrants (quadrant)
Turns (turn)
0 quadrant
0 turn
1 quadrant
0.25turn
10 quadrant
2.5turn
45 quadrant
11.25turn
90 quadrant
22.5turn
180 quadrant
45 turn
360 quadrant
90 turn
1000 quadrant
250 turn
Quadrants
Quadrants are a unit of angular measurement representing one-quarter of a full circle, equivalent to 90 degrees or π/2 radians. Quadrants are commonly used in geometry, astronomy, and navigation to describe and analyze positions, angles, and directional orientations within a defined space.
Turns
A turn, also known as a revolution or full circle, represents a complete rotation around a central point and is equal to 360 degrees or 2Ï€ radians. Turns are used in various disciplines, including engineering, navigation, and geometry, to describe full rotations. The concept of turns is deeply rooted in both mathematical theory and practical applications, such as in the design of gears and wheels.
{
"conversion": "quadrants-turns",
"x_slug": "quadrants",
"y_slug": "turns",
"x": "quadrant",
"y": "turn",
"x_desc": "Quadrants",
"y_desc": "Turns",
"category": "Angle",
"symbol": "m",
"formula": "x / 4",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a map is divided into 4 quadrants for detailed navigation.<br>Convert this section from quadrants to Turns.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in quadrants is:</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = 1</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from quadrants to turns is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Turns)</sub></span> = <span>Angle<sub>(Quadrants)</sub></span> / 4</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Quadrants)</sub> = 1</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Turns)</sub></span> = <span>1</span> / 4</p>\n <p class=\"step\"><span>Angle<sub>(Turns)</sub></span> = 0.25</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>1 quadrant</strong> is equal to <strong>0.25 turn</strong>.</p>\n <p>The angle is <strong>0.25 turn</strong>, in turns.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a pilot uses 2 quadrants to determine the aircraft's position.<br>Convert this section from quadrants to Turns.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in quadrants is:</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = 2</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from quadrants to turns is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Turns)</sub></span> = <span>Angle<sub>(Quadrants)</sub></span> / 4</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Quadrants)</sub> = 2</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Turns)</sub></span> = <span>2</span> / 4</p>\n <p class=\"step\"><span>Angle<sub>(Turns)</sub></span> = 0.5</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>2 quadrant</strong> is equal to <strong>0.5 turn</strong>.</p>\n <p>The angle is <strong>0.5 turn</strong>, in turns.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Quadrants</span> to <span class=\"y\">Turns</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Quadrants to Turns.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Quadrants (<span class=\"unit\">quadrant</span>)</th><th scope=\"column\" role=\"columnheader\">Turns (<span class=\"unit\">turn</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">quadrant</span></td><td>0 <span class=\"unit\">turn</span></td></tr><tr><td>1 <span class=\"unit\">quadrant</span></td><td>0<span>.25</span> <span class=\"unit\">turn</span></td></tr><tr><td>10 <span class=\"unit\">quadrant</span></td><td>2<span>.5</span> <span class=\"unit\">turn</span></td></tr><tr><td>45 <span class=\"unit\">quadrant</span></td><td>11<span>.25</span> <span class=\"unit\">turn</span></td></tr><tr><td>90 <span class=\"unit\">quadrant</span></td><td>22<span>.5</span> <span class=\"unit\">turn</span></td></tr><tr><td>180 <span class=\"unit\">quadrant</span></td><td>45 <span class=\"unit\">turn</span></td></tr><tr><td>360 <span class=\"unit\">quadrant</span></td><td>90 <span class=\"unit\">turn</span></td></tr><tr><td>1000 <span class=\"unit\">quadrant</span></td><td>250 <span class=\"unit\">turn</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"Ï€ Radians",
"Ï€ radians"
],
[
"zam",
"Zam",
"zam"
]
],
"y_long_desc": "A turn, also known as a revolution or full circle, represents a complete rotation around a central point and is equal to 360 degrees or 2Ï€ radians. Turns are used in various disciplines, including engineering, navigation, and geometry, to describe full rotations. The concept of turns is deeply rooted in both mathematical theory and practical applications, such as in the design of gears and wheels.",
"x_long_desc": "Quadrants are a unit of angular measurement representing one-quarter of a full circle, equivalent to 90 degrees or π/2 radians. Quadrants are commonly used in geometry, astronomy, and navigation to describe and analyze positions, angles, and directional orientations within a defined space."
}