How to use this Radians to Binary Degrees Converter 🤔
Follow these steps to convert given Radians value from Radians units to Binary Degrees units.
Enter the input Radians value in the text field.
The given Radians is converted to Binary Degrees in realtime ⌚ using the formula, and displayed under the Binary Degrees label.
You may copy the resulting Binary Degrees value using the Copy button.
Formula
To convert given angle from Radians to Binary Degrees, use the following formula.
Binary Degrees = Radians * 128 / π
Calculation
Calculation will be done after you enter a valid input.
Radians to Binary Degrees Conversion Table
The following table gives some of the most used conversions from Radians to Binary Degrees.
Radians (rad)
Binary Degrees (°)
0 rad
0 °
1 rad
40.7437°
10 rad
407.4367°
45 rad
1833.4649°
90 rad
3666.9299°
180 rad
7333.8598°
360 rad
14667.7196°
1000 rad
40743.6654°
Radians
Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.
Binary Degrees
Binary degrees, or 'binary angles,' are a unit of angular measurement used in digital systems where angles are represented using binary numbers. This system is particularly useful in computer graphics, robotics, and digital signal processing, where binary calculations are more efficient than traditional degrees.
{
"conversion": "radians-binary_degrees",
"x_slug": "radians",
"y_slug": "binary_degrees",
"x": "rad",
"y": "°",
"x_desc": "Radians",
"y_desc": "Binary Degrees",
"category": "Angle",
"symbol": "m",
"formula": "x * 128 / π",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a robotic arm rotates by 1.5 radians to position an object accurately.<br>Convert this angle from radians to Binary Degrees.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in radians is:</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 1.5</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from radians to binary degrees is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Binary Degrees)</sub></span> = <span>Angle<sub>(Radians)</sub></span> × 128 / π</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Radians)</sub> = 1.5</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Binary Degrees)</sub></span> = <span>1.5</span> × 128 / 3.14159265359</p>\n <p class=\"step\"><span>Angle<sub>(Binary Degrees)</sub></span> = 61.1155</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>1.5 rad</strong> is equal to <strong>61.1155 °</strong>.</p>\n <p>The angle is <strong>61.1155 °</strong>, in binary degrees.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a satellite dish adjusts by 0.75 radians to align with a signal.<br>Convert this angle from radians to Binary Degrees.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in radians is:</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 0.75</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from radians to binary degrees is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Binary Degrees)</sub></span> = <span>Angle<sub>(Radians)</sub></span> × 128 / π</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Radians)</sub> = 0.75</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Binary Degrees)</sub></span> = <span>0.75</span> × 128 / 3.14159265359</p>\n <p class=\"step\"><span>Angle<sub>(Binary Degrees)</sub></span> = 30.5577</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>0.75 rad</strong> is equal to <strong>30.5577 °</strong>.</p>\n <p>The angle is <strong>30.5577 °</strong>, in binary degrees.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Radians</span> to <span class=\"y\">Binary Degrees</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Radians to Binary Degrees.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Radians (<span class=\"unit\">rad</span>)</th><th scope=\"column\" role=\"columnheader\">Binary Degrees (<span class=\"unit\">°</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">rad</span></td><td>0 <span class=\"unit\">°</span></td></tr><tr><td>1 <span class=\"unit\">rad</span></td><td>40<span>.7437</span> <span class=\"unit\">°</span></td></tr><tr><td>10 <span class=\"unit\">rad</span></td><td>407<span>.4367</span> <span class=\"unit\">°</span></td></tr><tr><td>45 <span class=\"unit\">rad</span></td><td>1833<span>.4649</span> <span class=\"unit\">°</span></td></tr><tr><td>90 <span class=\"unit\">rad</span></td><td>3666<span>.9299</span> <span class=\"unit\">°</span></td></tr><tr><td>180 <span class=\"unit\">rad</span></td><td>7333<span>.8598</span> <span class=\"unit\">°</span></td></tr><tr><td>360 <span class=\"unit\">rad</span></td><td>14667<span>.7196</span> <span class=\"unit\">°</span></td></tr><tr><td>1000 <span class=\"unit\">rad</span></td><td>40743<span>.6654</span> <span class=\"unit\">°</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"π Radians",
"π radians"
],
[
"zam",
"Zam",
"zam"
]
],
"x_long_desc": "Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.",
"y_long_desc": "Binary degrees, or 'binary angles,' are a unit of angular measurement used in digital systems where angles are represented using binary numbers. This system is particularly useful in computer graphics, robotics, and digital signal processing, where binary calculations are more efficient than traditional degrees."
}