Follow these steps to convert given Radians value from Radians units to π Radians units.
Enter the input Radians value in the text field.
The given Radians is converted to π Radians in realtime ⌚ using the formula, and displayed under the π Radians label.
You may copy the resulting π Radians value using the Copy button.
Formula
To convert given angle from Radians to π Radians, use the following formula.
π Radians = Radians / π
Calculation
Calculation will be done after you enter a valid input.
Radians to π Radians Conversion Table
The following table gives some of the most used conversions from Radians to π Radians.
Radians (rad)
π Radians (π radians)
0 rad
0 π radians
1 rad
0.3183π radians
10 rad
3.1831π radians
45 rad
14.3239π radians
90 rad
28.6479π radians
180 rad
57.2958π radians
360 rad
114.5916π radians
1000 rad
318.3099π radians
Radians
Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.
π Radians
π radians represent a half-circle or 180 degrees. This unit is fundamental in mathematics, particularly in trigonometry and calculus, where the relationship between angles and the properties of circles is central to many concepts. The use of π radians simplifies the representation of angles and the formulation of trigonometric functions.
{
"conversion": "radians-pi_radians",
"x_slug": "radians",
"y_slug": "pi_radians",
"x": "rad",
"y": "π radians",
"x_desc": "Radians",
"y_desc": "π Radians",
"category": "Angle",
"symbol": "m",
"formula": "x / π",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a robotic arm rotates by 1.5 radians to position an object accurately.<br>Convert this angle from radians to π Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in radians is:</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 1.5</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from radians to π radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(π Radians)</sub></span> = <span>Angle<sub>(Radians)</sub></span> / π</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Radians)</sub> = 1.5</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = <span>1.5</span> / 3.14159265359</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = 0.4775</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>1.5 rad</strong> is equal to <strong>0.4775 π radians</strong>.</p>\n <p>The angle is <strong>0.4775 π radians</strong>, in π radians.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a satellite dish adjusts by 0.75 radians to align with a signal.<br>Convert this angle from radians to π Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in radians is:</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 0.75</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from radians to π radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(π Radians)</sub></span> = <span>Angle<sub>(Radians)</sub></span> / π</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Radians)</sub> = 0.75</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = <span>0.75</span> / 3.14159265359</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = 0.2387</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>0.75 rad</strong> is equal to <strong>0.2387 π radians</strong>.</p>\n <p>The angle is <strong>0.2387 π radians</strong>, in π radians.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Radians</span> to <span class=\"y\">π Radians</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Radians to π Radians.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Radians (<span class=\"unit\">rad</span>)</th><th scope=\"column\" role=\"columnheader\">π Radians (<span class=\"unit\">π radians</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">rad</span></td><td>0 <span class=\"unit\">π radians</span></td></tr><tr><td>1 <span class=\"unit\">rad</span></td><td>0<span>.3183</span> <span class=\"unit\">π radians</span></td></tr><tr><td>10 <span class=\"unit\">rad</span></td><td>3<span>.1831</span> <span class=\"unit\">π radians</span></td></tr><tr><td>45 <span class=\"unit\">rad</span></td><td>14<span>.3239</span> <span class=\"unit\">π radians</span></td></tr><tr><td>90 <span class=\"unit\">rad</span></td><td>28<span>.6479</span> <span class=\"unit\">π radians</span></td></tr><tr><td>180 <span class=\"unit\">rad</span></td><td>57<span>.2958</span> <span class=\"unit\">π radians</span></td></tr><tr><td>360 <span class=\"unit\">rad</span></td><td>114<span>.5916</span> <span class=\"unit\">π radians</span></td></tr><tr><td>1000 <span class=\"unit\">rad</span></td><td>318<span>.3099</span> <span class=\"unit\">π radians</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"π Radians",
"π radians"
],
[
"zam",
"Zam",
"zam"
]
],
"x_long_desc": "Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.",
"y_long_desc": "π radians represent a half-circle or 180 degrees. This unit is fundamental in mathematics, particularly in trigonometry and calculus, where the relationship between angles and the properties of circles is central to many concepts. The use of π radians simplifies the representation of angles and the formulation of trigonometric functions."
}