How to use this Radians to Quadrants Converter 🤔
Follow these steps to convert given Radians value from Radians units to Quadrants units.
Enter the input Radians value in the text field.
The given Radians is converted to Quadrants in realtime ⌚ using the formula, and displayed under the Quadrants label.
You may copy the resulting Quadrants value using the Copy button.
Formula
To convert given angle from Radians to Quadrants, use the following formula.
Quadrants = Radians * 2 / π
Calculation
Calculation will be done after you enter a valid input.
Radians to Quadrants Conversion Table
The following table gives some of the most used conversions from Radians to Quadrants.
Radians (rad)
Quadrants (quadrant)
0 rad
0 quadrant
1 rad
0.6366quadrant
10 rad
6.3662quadrant
45 rad
28.6479quadrant
90 rad
57.2958quadrant
180 rad
114.5916quadrant
360 rad
229.1831quadrant
1000 rad
636.6198quadrant
Radians
Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.
Quadrants
Quadrants are a unit of angular measurement representing one-quarter of a full circle, equivalent to 90 degrees or π/2 radians. Quadrants are commonly used in geometry, astronomy, and navigation to describe and analyze positions, angles, and directional orientations within a defined space.
{
"conversion": "radians-quadrants",
"x_slug": "radians",
"y_slug": "quadrants",
"x": "rad",
"y": "quadrant",
"x_desc": "Radians",
"y_desc": "Quadrants",
"category": "Angle",
"symbol": "m",
"formula": "x * 2 / π",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a robotic arm rotates by 1.5 radians to position an object accurately.<br>Convert this angle from radians to Quadrants.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in radians is:</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 1.5</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from radians to quadrants is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Quadrants)</sub></span> = <span>Angle<sub>(Radians)</sub></span> × 2 / Ï€</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Radians)</sub> = 1.5</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = <span>1.5</span> × 2 / 3.14159265359</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = 0.9549</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>1.5 rad</strong> is equal to <strong>0.9549 quadrant</strong>.</p>\n <p>The angle is <strong>0.9549 quadrant</strong>, in quadrants.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a satellite dish adjusts by 0.75 radians to align with a signal.<br>Convert this angle from radians to Quadrants.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in radians is:</p>\n <p class=\"step\"><span>Angle<sub>(Radians)</sub></span> = 0.75</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from radians to quadrants is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Quadrants)</sub></span> = <span>Angle<sub>(Radians)</sub></span> × 2 / Ï€</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Radians)</sub> = 0.75</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = <span>0.75</span> × 2 / 3.14159265359</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = 0.4775</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>0.75 rad</strong> is equal to <strong>0.4775 quadrant</strong>.</p>\n <p>The angle is <strong>0.4775 quadrant</strong>, in quadrants.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Radians</span> to <span class=\"y\">Quadrants</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Radians to Quadrants.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Radians (<span class=\"unit\">rad</span>)</th><th scope=\"column\" role=\"columnheader\">Quadrants (<span class=\"unit\">quadrant</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">rad</span></td><td>0 <span class=\"unit\">quadrant</span></td></tr><tr><td>1 <span class=\"unit\">rad</span></td><td>0<span>.6366</span> <span class=\"unit\">quadrant</span></td></tr><tr><td>10 <span class=\"unit\">rad</span></td><td>6<span>.3662</span> <span class=\"unit\">quadrant</span></td></tr><tr><td>45 <span class=\"unit\">rad</span></td><td>28<span>.6479</span> <span class=\"unit\">quadrant</span></td></tr><tr><td>90 <span class=\"unit\">rad</span></td><td>57<span>.2958</span> <span class=\"unit\">quadrant</span></td></tr><tr><td>180 <span class=\"unit\">rad</span></td><td>114<span>.5916</span> <span class=\"unit\">quadrant</span></td></tr><tr><td>360 <span class=\"unit\">rad</span></td><td>229<span>.1831</span> <span class=\"unit\">quadrant</span></td></tr><tr><td>1000 <span class=\"unit\">rad</span></td><td>636<span>.6198</span> <span class=\"unit\">quadrant</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"Ï€ Radians",
"Ï€ radians"
],
[
"zam",
"Zam",
"zam"
]
],
"x_long_desc": "Radians are a fundamental unit of angular measurement in the International System of Units (SI). One radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. Radians are essential in mathematics and physics, particularly in calculus and trigonometry, where they simplify equations and allow for the natural expression of rotational and periodic phenomena.",
"y_long_desc": "Quadrants are a unit of angular measurement representing one-quarter of a full circle, equivalent to 90 degrees or π/2 radians. Quadrants are commonly used in geometry, astronomy, and navigation to describe and analyze positions, angles, and directional orientations within a defined space."
}