Follow these steps to convert given Seconds value from Seconds units to π Radians units.
Enter the input Seconds value in the text field.
The given Seconds is converted to π Radians in realtime ⌚ using the formula, and displayed under the π Radians label.
You may copy the resulting π Radians value using the Copy button.
Formula
To convert given angle from Seconds to π Radians, use the following formula.
π Radians = Seconds / 648000
Calculation
Calculation will be done after you enter a valid input.
Seconds to π Radians Conversion Table
The following table gives some of the most used conversions from Seconds to π Radians.
Seconds (")
π Radians (π radians)
0 "
0 π radians
1 "
0.00000154321π radians
10 "
0.0000154321π radians
45 "
0.00006944444π radians
90 "
0.00013888889π radians
180 "
0.00027777778π radians
360 "
0.00055555556π radians
1000 "
0.00154320988π radians
Seconds
Seconds of arc, often simply called arcseconds, are a further subdivision of minutes of arc, with 60 seconds in one minute. This small unit is used for extremely precise angular measurements, such as those needed in astronomy, optics, and surveying, where even minute differences in angle can be significant.
π Radians
π radians represent a half-circle or 180 degrees. This unit is fundamental in mathematics, particularly in trigonometry and calculus, where the relationship between angles and the properties of circles is central to many concepts. The use of π radians simplifies the representation of angles and the formulation of trigonometric functions.
{
"conversion": "seconds-pi_radians",
"x_slug": "seconds",
"y_slug": "pi_radians",
"x": "\"",
"y": "π radians",
"x_desc": "Seconds",
"y_desc": "π Radians",
"category": "Angle",
"symbol": "m",
"formula": "x / 648000",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a microscope's fine adjustment is set to 30 arc seconds for detailed observation.<br>Convert this angle from seconds to π Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in seconds is:</p>\n <p class=\"step\"><span>Angle<sub>(Seconds)</sub></span> = 30</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from seconds to π radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(π Radians)</sub></span> = <span>Angle<sub>(Seconds)</sub></span> / 648000</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Seconds)</sub> = 30</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = <span>30</span> / 648000</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = 0.0000462963</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>30 \"</strong> is equal to <strong>0.0000462963 π radians</strong>.</p>\n <p>The angle is <strong>0.0000462963 π radians</strong>, in π radians.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a telescope's alignment needs to be within 20 arc seconds for accurate tracking.<br>Convert this angle from seconds to π Radians.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in seconds is:</p>\n <p class=\"step\"><span>Angle<sub>(Seconds)</sub></span> = 20</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from seconds to π radians is:</p>\n <p class=\"formula step\"><span>Angle<sub>(π Radians)</sub></span> = <span>Angle<sub>(Seconds)</sub></span> / 648000</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Seconds)</sub> = 20</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = <span>20</span> / 648000</p>\n <p class=\"step\"><span>Angle<sub>(π Radians)</sub></span> = 0.0000308642</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>20 \"</strong> is equal to <strong>0.0000308642 π radians</strong>.</p>\n <p>The angle is <strong>0.0000308642 π radians</strong>, in π radians.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Seconds</span> to <span class=\"y\">π Radians</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Seconds to π Radians.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Seconds (<span class=\"unit\">\"</span>)</th><th scope=\"column\" role=\"columnheader\">π Radians (<span class=\"unit\">π radians</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">\"</span></td><td>0 <span class=\"unit\">π radians</span></td></tr><tr><td>1 <span class=\"unit\">\"</span></td><td>0<span>.00000154321</span> <span class=\"unit\">π radians</span></td></tr><tr><td>10 <span class=\"unit\">\"</span></td><td>0<span>.0000154321</span> <span class=\"unit\">π radians</span></td></tr><tr><td>45 <span class=\"unit\">\"</span></td><td>0<span>.00006944444</span> <span class=\"unit\">π radians</span></td></tr><tr><td>90 <span class=\"unit\">\"</span></td><td>0<span>.00013888889</span> <span class=\"unit\">π radians</span></td></tr><tr><td>180 <span class=\"unit\">\"</span></td><td>0<span>.00027777778</span> <span class=\"unit\">π radians</span></td></tr><tr><td>360 <span class=\"unit\">\"</span></td><td>0<span>.00055555556</span> <span class=\"unit\">π radians</span></td></tr><tr><td>1000 <span class=\"unit\">\"</span></td><td>0<span>.00154320988</span> <span class=\"unit\">π radians</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"π Radians",
"π radians"
],
[
"zam",
"Zam",
"zam"
]
],
"x_long_desc": "Seconds of arc, often simply called arcseconds, are a further subdivision of minutes of arc, with 60 seconds in one minute. This small unit is used for extremely precise angular measurements, such as those needed in astronomy, optics, and surveying, where even minute differences in angle can be significant.",
"y_long_desc": "π radians represent a half-circle or 180 degrees. This unit is fundamental in mathematics, particularly in trigonometry and calculus, where the relationship between angles and the properties of circles is central to many concepts. The use of π radians simplifies the representation of angles and the formulation of trigonometric functions."
}