How to use this Sextants to Right Angles Converter 🤔
Follow these steps to convert given Sextants value from Sextants units to Right Angles units.
Enter the input Sextants value in the text field.
The given Sextants is converted to Right Angles in realtime ⌚ using the formula, and displayed under the Right Angles label.
You may copy the resulting Right Angles value using the Copy button.
Formula
To convert given angle from Sextants to Right Angles, use the following formula.
Right Angles = Sextants / 1.5
Calculation
Calculation will be done after you enter a valid input.
Sextants to Right Angles Conversion Table
The following table gives some of the most used conversions from Sextants to Right Angles.
Sextants (sextant)
Right Angles (right angle)
0 sextant
0 right angle
1 sextant
0.6667right angle
10 sextant
6.6667right angle
45 sextant
30 right angle
90 sextant
60 right angle
180 sextant
120 right angle
360 sextant
240 right angle
1000 sextant
666.6667right angle
Sextants
Sextants are a unit of angular measurement used primarily in navigation and astronomy, representing one-sixth of a full circle, or 60 degrees. The sextant instrument, named after this unit, is used to measure the angle between two visible objects, such as a star and the horizon, enabling precise determination of latitude and longitude at sea.
Right Angles
Right angles are a fundamental unit of angular measurement, representing 90 degrees or one-quarter of a full circle. Right angles are central to geometry, trigonometry, and many practical fields, including construction, engineering, and design, where perpendicularity and orthogonality are key principles.
{
"conversion": "sextants-right_angles",
"x_slug": "sextants",
"y_slug": "right_angles",
"x": "sextant",
"y": "right angle",
"x_desc": "Sextants",
"y_desc": "Right Angles",
"category": "Angle",
"symbol": "m",
"formula": "x / 1.5",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that an old navigation tool, the sextant, measures angles in 6 sextants.<br>Convert this measurement from sextants to Right Angles.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in sextants is:</p>\n <p class=\"step\"><span>Angle<sub>(Sextants)</sub></span> = 6</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from sextants to right angles is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Right Angles)</sub></span> = <span>Angle<sub>(Sextants)</sub></span> / 1.5</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Sextants)</sub> = 6</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Right Angles)</sub></span> = <span>6</span> / 1.5</p>\n <p class=\"step\"><span>Angle<sub>(Right Angles)</sub></span> = 4</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>6 sextant</strong> is equal to <strong>4 right angle</strong>.</p>\n <p>The angle is <strong>4 right angle</strong>, in right angles.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that an astronomer divides the night sky into 2 sextants for observation.<br>Convert this division from sextants to Right Angles.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in sextants is:</p>\n <p class=\"step\"><span>Angle<sub>(Sextants)</sub></span> = 2</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from sextants to right angles is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Right Angles)</sub></span> = <span>Angle<sub>(Sextants)</sub></span> / 1.5</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Sextants)</sub> = 2</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Right Angles)</sub></span> = <span>2</span> / 1.5</p>\n <p class=\"step\"><span>Angle<sub>(Right Angles)</sub></span> = 1.3333</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>2 sextant</strong> is equal to <strong>1.3333 right angle</strong>.</p>\n <p>The angle is <strong>1.3333 right angle</strong>, in right angles.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Sextants</span> to <span class=\"y\">Right Angles</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Sextants to Right Angles.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Sextants (<span class=\"unit\">sextant</span>)</th><th scope=\"column\" role=\"columnheader\">Right Angles (<span class=\"unit\">right angle</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">sextant</span></td><td>0 <span class=\"unit\">right angle</span></td></tr><tr><td>1 <span class=\"unit\">sextant</span></td><td>0<span>.6667</span> <span class=\"unit\">right angle</span></td></tr><tr><td>10 <span class=\"unit\">sextant</span></td><td>6<span>.6667</span> <span class=\"unit\">right angle</span></td></tr><tr><td>45 <span class=\"unit\">sextant</span></td><td>30 <span class=\"unit\">right angle</span></td></tr><tr><td>90 <span class=\"unit\">sextant</span></td><td>60 <span class=\"unit\">right angle</span></td></tr><tr><td>180 <span class=\"unit\">sextant</span></td><td>120 <span class=\"unit\">right angle</span></td></tr><tr><td>360 <span class=\"unit\">sextant</span></td><td>240 <span class=\"unit\">right angle</span></td></tr><tr><td>1000 <span class=\"unit\">sextant</span></td><td>666<span>.6667</span> <span class=\"unit\">right angle</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"Ï€ Radians",
"Ï€ radians"
],
[
"zam",
"Zam",
"zam"
]
],
"y_long_desc": "Right angles are a fundamental unit of angular measurement, representing 90 degrees or one-quarter of a full circle. Right angles are central to geometry, trigonometry, and many practical fields, including construction, engineering, and design, where perpendicularity and orthogonality are key principles.",
"x_long_desc": "Sextants are a unit of angular measurement used primarily in navigation and astronomy, representing one-sixth of a full circle, or 60 degrees. The sextant instrument, named after this unit, is used to measure the angle between two visible objects, such as a star and the horizon, enabling precise determination of latitude and longitude at sea."
}