Follow these steps to convert given Turns value from Turns units to Quadrants units.
Enter the input Turns value in the text field.
The given Turns is converted to Quadrants in realtime ⌚ using the formula, and displayed under the Quadrants label.
You may copy the resulting Quadrants value using the Copy button.
Formula
To convert given angle from Turns to Quadrants, use the following formula.
Quadrants = Turns * 4
Calculation
Calculation will be done after you enter a valid input.
Turns to Quadrants Conversion Table
The following table gives some of the most used conversions from Turns to Quadrants.
Turns (turn)
Quadrants (quadrant)
0 turn
0 quadrant
1 turn
4 quadrant
10 turn
40 quadrant
45 turn
180 quadrant
90 turn
360 quadrant
180 turn
720 quadrant
360 turn
1440 quadrant
1000 turn
4000 quadrant
Turns
A turn, also known as a revolution or full circle, represents a complete rotation around a central point and is equal to 360 degrees or 2Ï€ radians. Turns are used in various disciplines, including engineering, navigation, and geometry, to describe full rotations. The concept of turns is deeply rooted in both mathematical theory and practical applications, such as in the design of gears and wheels.
Quadrants
Quadrants are a unit of angular measurement representing one-quarter of a full circle, equivalent to 90 degrees or π/2 radians. Quadrants are commonly used in geometry, astronomy, and navigation to describe and analyze positions, angles, and directional orientations within a defined space.
{
"conversion": "turns-quadrants",
"x_slug": "turns",
"y_slug": "quadrants",
"x": "turn",
"y": "quadrant",
"x_desc": "Turns",
"y_desc": "Quadrants",
"category": "Angle",
"symbol": "m",
"formula": "x * 4",
"precision": 11,
"examples": "<div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">1</span>\n <h3 class=\"question\">Consider that a turntable rotates by 0.25 turns to play a vinyl record.<br>Convert this rotation from turns to Quadrants.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in turns is:</p>\n <p class=\"step\"><span>Angle<sub>(Turns)</sub></span> = 0.25</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from turns to quadrants is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Quadrants)</sub></span> = <span>Angle<sub>(Turns)</sub></span> × 4</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Turns)</sub> = 0.25</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = <span>0.25</span> × 4</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = 1</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>0.25 turn</strong> is equal to <strong>1 quadrant</strong>.</p>\n <p>The angle is <strong>1 quadrant</strong>, in quadrants.</p>\n </div>\n <div class=\"example\">\n <div class=\"example_head\"><span class=\"example_n\">2</span>\n <h3 class=\"question\">Consider that a wind turbine completes 2 turns in a light breeze.<br>Convert this rotation from turns to Quadrants.</h3></div>\n <h4 class=\"answer\">Answer:</h4>\n <p><strong>Given:</strong></p>\n <p>The angle in turns is:</p>\n <p class=\"step\"><span>Angle<sub>(Turns)</sub></span> = 2</p>\n <p><strong>Formula:</strong></p>\n <p>The formula to convert angle from turns to quadrants is:</p>\n <p class=\"formula step\"><span>Angle<sub>(Quadrants)</sub></span> = <span>Angle<sub>(Turns)</sub></span> × 4</p>\n <p><strong>Substitution:</strong></p>\n <p>Substitute given weight <strong>Angle<sub>(Turns)</sub> = 2</strong> in the above formula.</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = <span>2</span> × 4</p>\n <p class=\"step\"><span>Angle<sub>(Quadrants)</sub></span> = 8</p>\n <p><strong>Final Answer:</strong></p>\n <p>Therefore, <strong>2 turn</strong> is equal to <strong>8 quadrant</strong>.</p>\n <p>The angle is <strong>8 quadrant</strong>, in quadrants.</p>\n </div>\n ",
"table1n": "<h2><span class=\"x\">Turns</span> to <span class=\"y\">Quadrants</span> Conversion Table</h2><p>The following table gives some of the most used conversions from Turns to Quadrants.</p><table><thead><tr><th scope=\"column\" role=\"columnheader\">Turns (<span class=\"unit\">turn</span>)</th><th scope=\"column\" role=\"columnheader\">Quadrants (<span class=\"unit\">quadrant</span>)</th><tr></thead><tbody><tr><td>0 <span class=\"unit\">turn</span></td><td>0 <span class=\"unit\">quadrant</span></td></tr><tr><td>1 <span class=\"unit\">turn</span></td><td>4 <span class=\"unit\">quadrant</span></td></tr><tr><td>10 <span class=\"unit\">turn</span></td><td>40 <span class=\"unit\">quadrant</span></td></tr><tr><td>45 <span class=\"unit\">turn</span></td><td>180 <span class=\"unit\">quadrant</span></td></tr><tr><td>90 <span class=\"unit\">turn</span></td><td>360 <span class=\"unit\">quadrant</span></td></tr><tr><td>180 <span class=\"unit\">turn</span></td><td>720 <span class=\"unit\">quadrant</span></td></tr><tr><td>360 <span class=\"unit\">turn</span></td><td>1440 <span class=\"unit\">quadrant</span></td></tr><tr><td>1000 <span class=\"unit\">turn</span></td><td>4000 <span class=\"unit\">quadrant</span></td></tr></table>",
"units": [
[
"degrees",
"Degrees",
"°"
],
[
"radians",
"Radians",
"rad"
],
[
"gradians",
"Gradians",
"gon"
],
[
"minutes",
"Minutes",
"'"
],
[
"seconds",
"Seconds",
"\""
],
[
"turns",
"Turns",
"turn"
],
[
"circles",
"Circles",
"circle"
],
[
"binary_degrees",
"Binary Degrees",
"°"
],
[
"compass_points",
"Compass Points",
"compass point"
],
[
"diameter_part",
"Diameter Parts",
"diameter part"
],
[
"hexacontades",
"Hexa-Contades",
"hexacontade"
],
[
"hour_angles",
"Hour Angles",
"hour angle"
],
[
"right_angles",
"Right Angles",
"right angle"
],
[
"milliradians",
"Milli-radians",
"mrad"
],
[
"quadrants",
"Quadrants",
"quadrant"
],
[
"sextants",
"Sextants",
"sextant"
],
[
"pi_radians",
"Ï€ Radians",
"Ï€ radians"
],
[
"zam",
"Zam",
"zam"
]
],
"x_long_desc": "A turn, also known as a revolution or full circle, represents a complete rotation around a central point and is equal to 360 degrees or 2Ï€ radians. Turns are used in various disciplines, including engineering, navigation, and geometry, to describe full rotations. The concept of turns is deeply rooted in both mathematical theory and practical applications, such as in the design of gears and wheels.",
"y_long_desc": "Quadrants are a unit of angular measurement representing one-quarter of a full circle, equivalent to 90 degrees or π/2 radians. Quadrants are commonly used in geometry, astronomy, and navigation to describe and analyze positions, angles, and directional orientations within a defined space."
}